Differentially Private Random Block Coordinate Descent
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Problem Formulation
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w* € argmin < f(w) 1= — g O(w; ) o
wERd n i=1 )
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f(w;¢;) : RY x X — R is the loss func-
tion for a sample (;, and D = ((1,...,(n)
is a dataset of n samples drawn from
the universe X'.

Sketches

Given a random set S ~ S, define

p;j :=Prob(j € 5), jeld.

7pd)-

Definition 0 (Unbiased diagonal sketch).
For a given random set S ~ S we de-
fine a random diagonal matrix (sketch)

C = C(S) € R¥*4 via

We also denote P = Diag (pq, ...

1 cp -
=, ifj €S,
C = Diag(cy,...,¢cq), Cj:{pj /

Equivalently, we can write
C=I;P !

where I¢ = Diag (61,02, ...,04) is a di-

agonal matrix with

5. — 1, if 7€ 85,
o, if ¢S

0, otherwise.
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Assumptions

Assumption 1. Let S ~ S be nonva-
cuous, i.e., P(S = 0) = 0, and proper,
meaning that p;, > 0 for all 57 € [d].

Assumption 2 (Component smooth-
ness). Function f : R — R is M-
component-smooth for Mi,..., Mg >
0. That is, for all v, w € R<,

1

Fw) < F0)+{VF(©),w—v)+3

Algorithm 1 DP-SkGD

1: Input: Initial point w® € R,
step sizes I' = Diag (v1,...
number of iterations T,
number of inner loops K,
probability distribution & over the
subsets of |d],
noise scales oy for U € Range (S)

) Yd);

2: fort=0,...,T—1do

3. Set 8 = !

4: ftor k=0,..., K —1do

5: Sample a subset S ~ S and let
C =C(5)

6: Draw n ~ N (0,051)

7: g+l = gF —_TC (Vf(é’k) + 77)

g8: end for

9: Wit = % Z?:l o~

10: end for
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Assumption 3 (Component Lipschitz-
ness). Let S be a probability distribu-
tion over the 2¢ subsets of [d]. Func-
tion £(+;¢) : R4x X — R is Ls-component-
Lipschitz with Ly > 0 for all U €
Range (§), for all ( € X. This means
that for all v,w € R?, we have:

£ (w+Iyv; Q) — £ (w; ¢)| < Ly [[Tyv]| .

Block Coordinates

Consider a partition of [d] into b
nonempty blocks, denoted as Aq,..., Ap.
Let S = A; with probability ¢; > 0,
where ), q; = 1. For each i € [n], let
B(7) indicate which block ¢ belongs to.
In other words, i € A, iff B(i) = j.
Then p; := Prob(i € S) = qp). We
call the resulting method DP-SkGD-BS.
We define

Lia,, .. Ay = Z Lpge;.
1=1

1.0
fpp-1 = Hw —w HMP—l'

Importance Sampling

maX;cA, Mj
b .
Zi:l INaXjecA; Mj

q; =

Table 1: Utility guarantees for DP-SkGD-BS with varying values of b and different sampling strategies, along with

DP-CD, DP-SGD, and DP-SVRG.

Convex

Strongly-convex

DP-SkGD-BS (this paper)

Uniform Sampling

Importance Sampling

O. (|[Las,... 4} -1 Bvap-1)

0. (HL{AI,...,Ab}HM—l RM\/B)

O. (”L{Alv--,Ab}HM 1 \/E IIéBAXM )

(HL{Al, g {4))

(HL{AI, Ab}HM 1 ;Mmaxb)

(HL{Al, Ab}HM L ZmaxM)

i=1J€A

DP-SkGD-BS (this paper)
b=d

Uniform Sampling

Importance Sampling

O. (HL{I,...,d} ||M—1 RMP_I)
O

‘ (||L{1,...,d}||M_1 RM\/c_l)
0. (I11,..apl|pg-s Bry/Tr (M)

_ (||L{1,...,d}HM—1 %?é?i]({f }>

O (L0t g+ Momaxd)
O- (HL{l I T (M)

DP-CD (Mangold et al., 2022)

O, (”L{l,...,d}”M—l RM\/C_Z)

(||L{1 N o —d)

DP-SkGD-BS (this paper)
b=1

0. (L\/Tr (M—l)RM)

O (L2 Tr (M) £ Mypa)

DP-SGD (Bassily et al., 2014)
DP-SVRG (Wang et al., 2017)

O, (L\/ERI)

O (LZ%d)

We use the notation O, to suppress the common term
Similarly, we denote O_ to suppress the term —%5

V/1og(1/9)

log(1/9)

Our method gains an advantage over DP-CD due to the use of importance

sampling.

To illustrate, consider the case where b = d (i.e., single coordinate sampling).
Assume that M7 > M, for all j # 1, and similarly, |w] — w}| > |w9 —
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