
MindFlayer: Efficient Parallel SGD with Random Worker Delays

From Deterministic Delays to Random Chaos

● Minibatch SGD: A classical method that processes gradients in parallel 
but is limited by the slowest worker.

● Asynchronous SGD (ASGD): Updates models as soon as any worker 
sends a gradient but suffers from delays caused by outdated gradients.

● Rennala SGD [1]:
○ Collects multiple gradients at the same model point.
○ Utilizes faster workers while ignoring slower ones.
○ Proven optimal for fixed compute times, no .

Challenge: Rennala fails in realistic scenarios with random delays, 
necessitating a new approach for robust optimization.

MindFlayer SGD MindFlayer vs. Rennala: Theory and 
Experiments
In this setting, Rennala’s time complexity is a random variable depending 
on the random variable TB representing the time to collect a batch of size B
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Problem Setup: Distributed Training
We address the nonconvex optimization problem:

We assume we have access to n parallel workers that compute stochastic 
gradients independently
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• Failing hardware
• Busy with other jobs
• Partial participation
• Inconsistencies in network 
communications

Convergence and Time Complexity

Visualizing Client Utilization Across Minibatch SGD, ASGD, and Rennala SGD
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Time complexity comparison across various distributions. MindFlayer SGD consistently outperforms Rennala SGD under 
heavy-tailed distributions, with ti selected as the median or optimized via L-BFGS-B [2].

Performance of MindFlayer SGD, Rennala SGD, and ASGD on a quadratic problem (n=5 clients, Bi set from Theorem). 
MindFlayer SGD demonstrates robustness under increasing variance (s=1,10,100), while Rennala SGD and ASGD 

degrade significantly.

Performance of MindFlayer SGD, Rennala SGD, and ASGD on a two-layer neural network with Log-Cauchy-distributed 
delays (s=1, 10, 100). MindFlayer SGD maintains consistent convergence across scales, while Rennala SGD and ASGD 

struggle under larger scale values.


