Ringmaster ASGD: The First Asynchronous SGD with Optimal Time Complexity

Artavazd Maranjyan

FLOW Talk #126 16 April 2025

Ringmaster ASGD: The First Asynchronous SGD with Optimal Time Complexity

Problem setup

Optimization objective

Heterogenous system

Method (SGD)

Different ways of parallelizing SGD

Synchronized approaches

Asynchronous SGD

Problems of ASGD

Ringmaster ASGD

Series of talks on Asynchronous SGD

Part 1

The core optimization problem in Machine Learning (and beyond)

$$\min_{x \in \mathbb{R}^d} \left\{ f(x) := \mathbb{E}_{\xi \sim \mathcal{D}} \left[f(x; \xi) \right] \right\}$$
 Loss of a data sample ξ

The distribution of the training dataset

$$\mathcal{D} = \text{Uniform}([m]) \qquad \frac{1}{m} \sum_{i=1}^{m} f(x; \xi_i)$$

A common method in ML is Stochastic Gradient Descent (SGD)

Stepsize / Learning rate

$$x^{k+1} = x^k - \gamma g(x^k)$$

Unbiased gradient estimator, e.g.,

$$\nabla f(x^k; \xi^k)$$

$$\frac{1}{B} \sum_{i=1}^{B} \nabla f(x^k; \xi_i^k)$$

How to parallelize SGD in heterogeneous systems?

 $\nabla f(x;\xi)$

Compute time = 1

 au_1

$$\nabla f(x;\xi)$$

Compute time = $\overline{t_2}$

 au_2

$$\nabla f(x;\xi)$$

Compute time = $\overline{t_3}$

$$au_3$$

$$\mathbb{E}[g(x^k)] = \nabla f(x^k)$$

$$x^{k+1} = x^k - \gamma g(x^k)$$

How to construct?

Hero SGD: The fastest worker does it all

Minibatch SGD: Each worker does one job only

Rennala SGD: Asynchronous batch collection

$$x^{k+1} = x^k - \gamma \frac{1}{B} \sum_{j=1}^{B} \nabla f(x^k; \xi_j^k)$$

Asynchronous SGD Remove the synchronization

$$x^{k+1} = x^k - \gamma g(x^k)$$

$$\nabla f(x^0;\xi)$$

$$x^{k+1} = x^k - \gamma \nabla f(x^{k-\delta^k}; \xi)$$

Delay δ^k

Feng Niu, Benjamin Recht, Christopher Re, Stephen J. Wright. HOGWILD!: A lock-free approach to parallelizing stochastic gradient descent. NeurIPS 2011

NeurIPS 2020 Test of Time Award

More than a decade of research on Asynchronous SGD

"First" ASGD	Delay-adaptive ASGD	Semi-asynchronous SGD	fully asynchronous SGD
2011	2022	2023	2025
Hogwild!	Koloskova et al. Mishchenko et al.	Rennala SGD	

How to fix this? Make the stepsize smaller

Asynchronous SGD is too wild: Ringmaster ASGD *tames* it

The smaller the delay, the better the gradient

The smaller the delay, the better the gradient

The smaller the delay, the better the gradient

Naive approach: Remove slow workers

Compute time = 1

Compute time = 72

 au_2

 au_3

Naive approach: Remove slow workers

Use only the first
$$m_\star = \arg\min_{m \in [n]} \left\{ \left(\frac{1}{m} \sum_{i=1}^m \frac{1}{\overline{\tau_i}} \right)^{-1} \left(1 + \frac{\sigma^2}{m \varepsilon} \right) \right\}$$
 fastest workers $\mathbb{E} \left[\|\nabla f(x)\|^2 \right] \leq \varepsilon$

Problem: τ_i -s may be unknown and dynamic

Ringmaster ASGD: Have a threshold on delays

Else: Ignore the gradient and send the current point x^k to the worker

Ringmaster ASGD: Have a threshold on delays

Server

Certain threshold choices in Ringmaster ASGD recover previous methods

$$R = \max\left\{1, \left\lceil \frac{\sigma^2}{\varepsilon} \right\rceil\right\}$$

$$R=1 \\ {\rm Hero}\, {\rm SGD}$$

Sweet spot

$$R=\infty$$
 HOGWILD!

Theoretical results validate our intuition

$$R = \max\left\{1, \left\lceil \frac{\sigma^2}{\varepsilon} \right\rceil \right\} \qquad \gamma = \min\left\{\frac{1}{2RL}, \frac{\varepsilon}{4L\sigma^2} \right\}$$

$$\mathcal{O}\left(\frac{\mathbf{R}}{\varepsilon} + \frac{\sigma^2}{\varepsilon^2}\right)$$

Number of iterations

$$\mathcal{O}\left(\min_{m\in[n]}\left[\left(\frac{1}{m}\sum_{i=1}^{m}\frac{1}{\tau_i}\right)^{-1}\left(\frac{1}{\varepsilon}+\frac{\sigma^2}{m\varepsilon^2}\right)\right]\right)$$

Time complexity

non-decreasing

decreasing

Ringmaster ASGD outperforms existing baselines

 $x^{k+1} = x^k - \gamma g(x^k)$

Problem setup
Optimization objective
Heterogenous system
Method (SGD)

Problem setup

Optimization objective

Heterogenous system

Method (SGD)

Different ways of parallelizing SGD Synchronized approaches

Problem setup

Optimization objective Heterogenous system Method (SGD)

Different ways of parallelizing SGD

Synchronized approaches

Asynchronous SGD

Problem setup

Optimization objective Heterogenous system Method (SGD)

Different ways of parallelizing SGD

Synchronized approaches Asynchronous SGD

Problems of ASGD

Problem setup

Optimization objective

Heterogenous system

Method (SGD)

Different ways of parallelizing SGD

Synchronized approaches

Asynchronous SGD

Problems of ASGD

Ringmaster ASGD

Alexander Tyurin Skoltech

Peter Richtárik KAUST

Closely related papers

Artavazd Maranjyan, Omar Shaikh Omar, Peter Richtárik (2024)

MindFlayer: Efficient asynchronous parallel SGD in the presence of heterogeneous and random worker compute times

Artavazd Maranjyan, El Mehdi Saad, Peter Richtarik, and Francesco Orabona (2025)

ATA: Adaptive Task Allocation for Efficient Resource Management

in Distributed Machine Learning

There's still a lot we don't know about asynchronous SGD

"First" ASGD fully asynchronous SGD What's next?

2011

2025

