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Series of talks on Asynchronous SGD
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The core optimization problem
in Machine Learning (and beyond)

min { f(z) := Ecop [f(256)]}
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Loss of a data sample &

The distribution of the training dataset
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D = Uniform(|m)) o Z f(xa fz)



A common method in ML is
Stochastic Gradient Descent (SGD)

Stepsize / Learning rate
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How to parallelize SGD
in heterogeneous systems?
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Hero SGD:
The fastest worker does it all
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Minibatch SGD:
Each worker does one job only




Rennala SGD:
Asynchronous batch collection
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Asynchronous SGD

Remove the synchronization
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Updates of Asynchronous SGD
has delayed stochastic gradients
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Updates of Asynchronous SGD
has delayed stochastic gradients
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Updates of Asynchronous SGD
has delayed stochastic gradients
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Updates of Asynchronous SGD
has delayed stochastic gradients
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Feng Niu, Benjamin Recht, Christopher Re, Stephen J. Wright.
HOGWILD!: A lock-free approach to parallelizing stochastic gradient descent.
NeurlPS 2011

NeurlPS 2020 Test of Time Award



More than a decade of research
on Asynchronous SGD

“First” ASGD Delay-adaptive ASGD Semi-asynchronous SGD fully asynchronous SGD

2011 2022 2023 2025

Koloskova et al. Rennala SGD
Mishchenko et al.




Asynchronous SGD can get wild:
delays can degrade performance




Asynchronous SGD can get wild:
delays can degrade performance

y f(z,y) = 2° + 5y~

Gradient Descent iterations




Asynchronous SGD can get wild:
delays can degrade performance
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Asynchronous SGD can get wild:
delays can degrade performance

Delay =5




How to fix this?
Make the stepsize smaller




Asynchronous SGD is too wild:
Ringmaster ASGD tames it




The smaller the delay,
the better the gradient




The smaller the delay,
the better the gradient




The smaller the delay,
the better the gradient




Naive approach:
Remove slow workers
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Naive approach:
Remove slow workers

E[|Vf(z;:€) = Vf(@)|] <0’

1+ —1 7 fastest workers

1 m
Use only the first m, = arg min —

Problem:;-s may be unknown and dynamic



Ringmaster ASGD:
Have a threshold on delays
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Else: Ignore the gradient and send the current point " to the worker
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Ringmaster ASGD:
Have a threshold on delays
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How to choose the delay threshold R
If: 6% <R
AR v (xk—(sk;é_f_&c)

Else: Ignore the gradient and send the current point " to the worker
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Certain threshold choices in Ringmaster ASGD
recover previous methods
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Theoretical results
validate our intuition
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Ringmaster ASGD
outperforms existing baselines
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Recap of what we have covered
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Recap of what we have covered
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Synchronized approaches
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Alexander Tyurin Peter Richtarik
Skoltech KAUST



Closely related papers

MindFlayer: Efficient asynchronous parallel SGD in the presence

' Artavazd Maranjyan, Omar Shaikh Omar, Peter Richtarik (2024)
of heterogeneous and random worker compute times

Artavazd Maranjyan, El Mehdi Saad, Peter Richtarik, and Francesco Orabona (2025)
ATA: Adaptive Task Allocation for Efficient Resource Management
in Distributed Machine Learning



There’s still a lot we don’t know
about asynchronous SGD

“First” ASGD fully asynchronous SGD What’s next?
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