Ringmaster ASGD: The First Asynchronous SGD with Optimal Time Complexity

Artavazd Maranjyan

Flower Al Summit, London March 26-27 2025

جامعة الملك عبدالله للعلوم والتقنية King Abdullah University of Science and Technology

How to parallelize SGD in heterogeneous systems?

Server

Asynchronous SGD Remove the synchronization

Server

Feng Niu, Benjamin Recht, Christopher Re, Stephen J. Wright, (2011). HOGWILD!: A lock-free approach to parallelizing stochastic gradient descent.

Asynchronous SGD is too wild: Ringmaster ASGD *tames* it

The smaller the delay, the better the gradient

Naive approach: Remove slow workers

Compute	time	$=T_1$
---------	------	--------

Compute time = $\overline{T_2}$

Server

Naive approach: Remove slow workers

$$\mathbb{E}\left[\|\nabla f(x;\xi) - \nabla f(x)\|^2\right] \le \sigma^2$$

$$m_{\star} = \arg\min_{m\in[n]} \left\{ \left(\frac{1}{m}\sum_{i=1}^m \frac{1}{\tau_i}\right)^{-1} \left(1 + \frac{\sigma^2}{m\varepsilon}\right) \right\} \quad \text{fastest workers}$$

$$\mathbb{E}\left[\|\nabla f(x)\|^2\right] \le \varepsilon$$

Problem: τ_i -s may be unknown and dynamic

Ringmaster ASGD: Have a threshold on delays

Certain threshold choices in Ringmaster ASGD recover previous methods

Theoretical results validate our intuition

$$\mathcal{O}\left(\frac{\boldsymbol{R}}{\varepsilon} + \frac{\sigma^2}{\varepsilon^2}\right)$$

Number of iterations

$$\mathcal{O}\left(\min_{m\in[n]}\left[\left(\frac{1}{m}\sum_{i=1}^{m}\frac{1}{\tau_i}\right)^{-1}\left(\frac{1}{\varepsilon}+\frac{\sigma^2}{m\varepsilon^2}\right)\right]\right)$$

non-decreasing decreasing

Time complexity

Ringmaster ASGD outperforms existing baselines

