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The distribution of the training dataset

Loss of a data sample 

The core optimization problem
in Machine Learning (and beyond)



Stepsize / Learning rate

Unbiased gradient estimator, e.g.,

A common method in ML is 
Stochastic Gradient Descent (SGD)



How to parallelize SGD 
in heterogeneous systems?

Compute time = Compute time =Compute time =

How to construct?
Server



Time

Hero SGD:
The fastest worker does it all



Minibatch SGD:
Each worker does one job only

Time



Rennala SGD:
Asynchronous batch collection

Time

Tyurin and Richtárik (2024)



Time

Asynchronous SGD
Remove the synchronization



Server

Updates of Asynchronous SGD
has delayed stochastic gradients
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Niu, et al. (2011).
HOGWILD!: A lock-free approach to parallelizing stochastic gradient descent.



Asynchronous SGD can get wild:
delays can degrade performance

Directions: Use the on graph slider to change the 
number of iterations of gradient descent. You can 
move around the initial starting point by clicking 
and dragging.

Enter your function here (you must also copy it to 
the left of the B below). It will be plotted as a 
contour plot (Red values are larger, blue values 
are smaller). You can change the resolution of the 
contour plot in the 'Contour Plot' folder.
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How to fix this?
Make the stepsize smaller

Directions: Use the on graph slider to change the 
number of iterations of gradient descent. You can 
move around the initial starting point by clicking 
and dragging.

Enter your function here (you must also copy it to 
the left of the B below). It will be plotted as a 
contour plot (Red values are larger, blue values 
are smaller). You can change the resolution of the 
contour plot in the 'Contour Plot' folder.
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Asynchronous SGD is too wild:
Ringmaster ASGD tames it



The smaller the delay,
the better the gradient
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and dragging.
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contour plot (Red values are larger, blue values 
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contour plot in the 'Contour Plot' folder.
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The smaller the delay,
the better the gradient
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How can we reduce the delay?



Naive approach:
Remove slow workers

Compute time = Compute time =Compute time =

Server



Naive approach:
Remove slow workers

Use only the first fastest workers

Problem:    -s may be unknown and dynamic



Server

Ringmaster ASGD:
Have a threshold on delays

If: fddfsaffaf

Else: Ignore the gradient and send the current point       to the worker



Server

Ringmaster ASGD:
Have a threshold on delays

If: fddfsaffaf

Else: Ignore the gradient and send the current point       to the worker

How to choose the delay threshold as 



Certain threshold choices in Ringmaster ASGD
recover previous methods

Hero SGD HOGWILD!
Sweet spot



Theoretical results
validate our intuition

Number of iterations

Time complexity

non-decreasing decreasing



Ringmaster ASGD
outperforms existing baselines



Recap of what we have covered
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Server

If:fddfsaffaf

Else: Ignore the gradient and send the current point       to the worker



Alexander Tyurin
Skoltech

Peter Richtárik
KAUST



Closely related papers

Artavazd Maranjyan, Omar Shaikh Omar, Peter Richtárik (2024)
MindFlayer: Efficient asynchronous parallel SGD in the presence 
of heterogeneous and random worker compute times

Artavazd Maranjyan, El Mehdi Saad, Peter Richtarik, and Francesco Orabona (2025)
ATA: Adaptive Task Allocation for Efficient Resource Management 
in Distributed Machine Learning
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