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Abstract
Asynchronous Stochastic Gradient Descent (Asyn-
chronous SGD) is a cornerstone method for paralleliz-
ing learning in distributed machine learning. However,
its performance suffers under arbitrarily heterogeneous
computation times across workers, leading to subop-
timal time complexity and inefficiency as the number
of workers scales. While several Asynchronous SGD
variants have been proposed, recent findings by [6] re-
veal that none achieve optimal time complexity, leav-
ing a significant gap in the literature. In this paper, we
propose Ringmaster ASGD, a novel Asynchronous SGD
method designed to address these limitations and tame
the inherent challenges of Asynchronous SGD. We es-
tablish, through rigorous theoretical analysis, that Ring-
master ASGD achieves optimal time complexity under
arbitrarily heterogeneous and dynamically fluctuating
worker computation times. This makes it the first Asyn-
chronous SGD method to meet the theoretical lower
bounds for time complexity in such scenarios.

Introduction
We consider stochastic nonconvex optimization prob-
lems of the form

min
x∈Rd

{
f(x) := Eξ∼D [f(x; ξ)]

}
,

where f : Rd × Sξ → R, Rd is a linear space, and
Sξ is a sample space. In machine learning, f(x; ξ) de-
notes the loss of a model parameterized by x on a data
sample ξ, and D denotes the distribution of the training
dataset. In nonconvex optimization, our goal is to find
an ε–stationary point, i.e., a (random) vector x̄ ∈ Rd

such that E[∥∇f(x̄)∥2] ≤ ε.
We consider a setup involving n workers (e.g., CPUs,

GPUs, servers), each with access to the same distri-
bution D. Each worker is capable of computing in-
dependent, unbiased stochastic gradients with bounded
variance (Assumption 3). We consider a setup with
asynchronous, heterogeneous, and varying computation
speeds. We aim to account for all potential scenarios,
such as random outages, varying computational perfor-
mance over time, and the presence of slow or straggling
workers [4].

This setup is common in both datacenter environments
and federated learning [3] for distributed training. Al-
though parallelism facilitates rapid convergence, vari-
ations in worker speeds make effective coordination
more challenging.

Asynchronous Stochastic Gradient Descent (Asyn-
chronous SGD) is a popular approach for paralleliza-
tion in such distributed settings. Despite the variety of
Asynchronous SGD algorithms proposed over the years,
a fundamental question remained unresolved: What is
the optimal strategy for parallelization in this setting?

In this work, we answer this question affirma-
tively. We reestablish the prominence of Asynchronous
SGD by proposing a novel asynchronous optimization
method that attains optimal time complexity.

Problem Setup
To compare methods, we consider the fixed computation
model [5]. In this model, it is assumed that

worker i takes no more than τi seconds
to compute a single stochastic gradient.

(1)

and
0 < τ1 ≤ τ2 ≤ · · · ≤ τn, (2)

without loss of generality. Let 1 ≤ m ≤ n, and denote
the harmonic mean of the first m values of τi by

τm
h :=

 1

m

m∑
i=1

1

τi

−1

.

Assumptions
We consider the standard assumptions from the noncon-
vex world.

Assumption 1. Function f is differentiable, and its gra-
dient is L–Lipschitz continuous, i.e.,

∥∇f(x) − ∇f(y)∥ ≤ L ∥x − y∥ , ∀x, y ∈ Rd.

Assumption 2. There exist f inf ∈ R such that f(x) ≥
f inf for all x ∈ Rd. We define ∆ := f(x0) − f inf ,
where x0 is the starting point of optimization methods.

Assumption 3. The stochastic gradients ∇f(x; ξ) are
unbiased and have bounded variance σ2 ≥ 0. Specifi-
cally,

Eξ [∇f(x; ξ)] = ∇f(x), ∀x ∈ Rd,

Eξ

[
∥∇f(x; ξ) − ∇f(x)∥2

]
≤ σ2, ∀x ∈ Rd.

Ringmaster ASGD
We are now ready to present our new versions of Asyn-
chronous SGD, called Ringmaster ASGD (Algorithm 1),
which guarantee the optimal time complexity without
knowing the computation times a priori.

Algorithm 1 Ringmaster ASGD

1: Input: point x0 ∈ Rd, stepsize γ > 0, delay
threshold R ∈ N

2: Set k = 0
3: Workers start computing stochastic gradients at x0

4: while True do
5: Stop calculating stochastic gradients with delays

≥ R, and start computing new ones at xk instead

6: Gradient ∇f(xk−δk
; ξk−δk

i ) arrives from
worker i

7: Update: xk+1 = xk − γ∇f(xk−δk
; ξk−δk

i )

8: Worker i begins calculating ∇f(xk+1; ξk+1
i )

9: Update the iteration number k = k + 1
10: end while

Note that we have a parameter R called the delay
threshold. When R = 1, the algorithm reduces to the
classical SGD method, i.e.,

xk+1 = xk − γ∇f(xk; ξki ),

since δk = 0 for all k ≥ 0. In this case, the algorithm
becomes highly conservative, ignoring all stochastic
gradients computed at earlier points xk−1, . . . , x0.
Conversely, if R = ∞, the method incorporates
stochastic gradients with arbitrarily large delays, and
becomes classical Asynchronous SGD. Intuitively, there
should be a balance – a “proper” value of R that would
i) prevent the method from being overly conservative,
while ii) ensuring stability by making sure that only in-
formative stochastic gradients are used to update the
model. We formalize these intuitions by proposing an
optimal R in Theorem 2. Interestingly, the value of R
does not depend on the computation times.

Why Do We Ignore the Old Gradients?
Ignoring old gradients allows us to establish tighter con-
vergence guarantees. Intuitively, old gradients not only
fail to provide additional useful information about the
function f , but they can also negatively impact the al-
gorithm’s performance.

Table 1 below shows our method achieves optimal
time complexity.

Method Time Complexity

Asynchronous SGD
[2] [5] τn

h

(
1
ε + σ2

mε2

)
Ringmaster ASGD min

m∈[n]

{
τm
h

(
1
ε + σ2

mε2

)}
Lower Bound

[6] min
m∈[n]

{
τm
h

(
1
ε + σ2

mε2

)}
Table 1: The time complexities of
asynchronous stochastic gradient meth-
ods, which preform the step xk+1 =

xk − γk∇f(xk−δk

; ξk−δk

i ), to get an ε-
stationary point in the nonconvex setting.

Theoretical Results
Here is the theoretical analysis of Ringmaster ASGD.
We start with an iteration complexity bound:
Theorem 1. Under Assumptions 1, 2, and 3, let the step-
size in Ringmaster ASGD (Algorithm 1) be

γ = min

{
1

2RL
,

ε

4Lσ2

}
.

Then

1

K + 1

K∑
k=0

E
[∥∥∥∇f

(
xk
)∥∥∥2] ≤ ε,

as long as

K ≥
8RL∆

ϵ
+

16σ2L∆

ϵ2
, (3)

where R ∈ {1, 2, . . . , }.
The classical analysis of Asynchronous SGD achieves

the same convergence rate, with R defined as R ≡
maxk∈[K] δ

k [1]. This outcome is expected, as set-
ting R = maxk∈[K] δ

k in Ringmaster ASGD makes
it equivalent to classical Asynchronous SGD, since no
gradients are ignored.

It is important to recognize that the iteration com-
plexity (3) does not capture the actual “runtime” perfor-
mance of the algorithm. In order to find the time com-
plexity, we need the following lemma.

Lemma 1. Let the workers’ computation times satisfy
the fixed computation model ((1) and (2)). Let R be
the delay threshold of Algorithm 1. The time required
to complete any R consecutive iterate updates of Algo-
rithm 1 is at most

t(R) := 2 min
m∈[n]


 1

m

m∑
i=1

1

τi

−1(
1 +

R

m

) .

Combining Theorem 1 and Lemma 1, we have:
Theorem 2 (Optimality of Ringmaster ASGD). Let As-
sumptions 1, 2, and 3 hold. Let the stepsize in Ringmas-

ter ASGD (Algorithm 1) be γ = min
{

1
2RL,

ε
4Lσ2

}
.

Then, under the fixed computation model ((1) and (2)),
Ringmaster ASGD achieves the optimal time complexity

O

 min
m∈[n]


 1

m

m∑
i=1

1

τi

−1(
L∆

ε
+

σ2L∆

mε2

)


with the delay threshold

R = max

{
1,

⌈
σ2

ε

⌉}
. (4)

Note that the value of R does not in any way depend
on the computation times {τ1, . . . , τn}.

Experiments
The optimization task is based on the convex quadratic
function f : Rd → R such that

f(x) =
1

2
x⊤Ax − b⊤x ∀x ∈ Rd.

The computation times for each worker are simulated as
τi = i + |ηi| for all i ∈ [n], where ηi ∼ N (0, i).
We tuned the stepsize from the set {5p : p ∈ [−5, 5]}.
Both the batch size for Rennala SGD and the delay
threshold for Ringmaster ASGD were tuned from the
set {⌈n/4p⌉ : p ∈ N0}. The experimental results are
shown in Figure 1.
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Figure 1: Experiment with n = 6174
and d = 1729 showing the convergence of
Ringmaster ASGD, Delay-Adaptive ASGD, and
Rennala SGD.

Conclusion
In this work, we developed the first Asynchronous SGD
method, named Ringmaster ASGD, that achieves opti-
mal time complexity. By selecting an appropriate delay
threshold R in Algorithm 1, the method attains the the-
oretical lower bounds established by [6].
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