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ON THE CONVERGENCE OF SERIES IN CLASSICAL SYSTEMS

ԴԱՍԱԿԱՆ ՀԱՄԱԿԱՐԳԵՐՈՎ ՇԱՐՔԵՐԻ ԶՈՒԳԱՄԻՏՈՒԹՅԱՆ
ՄԱՍԻՆ

О СХОДИМОСТИ РЯДОВ ПО КЛАССИЧЕСКИМ СИСТЕМАМ

ABSTRACT

This thesis is dedicated to some problems connected to series in Faber-

Schauder, Vilenkin-Chrestenson and Haar classical systems. Such as rep-

resentation system, divergence set, and recovering of function and its

Fourier coefficients.
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Introduction

Faber-Schauder, Vilenkin-Chrestenson and Haar classical systems are im-
portant systems. Many mathematicians have studied them, especially in the
last few years (see [39], [29], [26] [12], [21], [19], [23]).

Thesis includes 3 chapters. The first part of the thesis proves that the
Faber-Schauder functions form an unconditional representation system for
L1.

The second part of the thesis proves that there exists a set E of an arbi-
trary small measure, such that each function f ∈ L1 whose Fourier-Vilenkin-
Chrestenson coefficients are majorized by {An} ↓ 0, can be recovered by the
values of f on E. And given a formula for recovering the Fourier-Vilenkin-
Chrestenson coefficients of such a function by its values on E.

In the third part of the thesis, for any countable set D ⊂ [0, 1], constructed
a bounded measurable function f , such that the Fourier series of f with re-
spect to the regular general Haar system is divergent on D and convergent
on [0, 1]\D.
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Mathematical Notation

• N – the set of positive integers

• C – the set of complex numbers

• µ (E) – the Lebesgue measure of the measurable set E.

• χE(x) – the characteristic function of set E, i.e.

χE(x) :=

1, x ∈ E,

0, x /∈ E.

• supp(f) – the set-theoretic support of f function, i.e.

supp(f) := {x : f(x) ̸= 0}

• #A – the cardinality of a finite set A
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1 On The Unconditional Convergence of

Faber-Schauder Series in L1

A basis of a Banach space X, is a countable set B = {xn ∈ X : n ∈ N}, such
that each x ∈ X can be uniquely represented by series

∞∑
n=1

An(x)xn converging

to x in the norm of X. If
∞∑
n=1

An(x)xn converges after any rearrangement of the
terms, then the series is an unconditional representation of x, and the basis is
called unconditional basis.

Let E be a measurable set with positive measure, and let S be a metric
space of measurable functions f(x), x ∈ E.

Definition 1.0.1. A system {gn(x)}, gn(x) ∈ S, n = 1, 2, . . . is called system of
unconditional representation for the space S, if for every f ∈ S there is a
series

∞∑
n=0

bngn(x), which converges unconditionally to f in the metric of the
space S, that is for any rearrangement {π(n)} of the natural numbers the series
∞∑
n=0

bπ(n)gπ(n)(x) converges to f in the metric of S.

The basisness of the Faber-Schauder system in C[0, 1] (see [34]) provides
variety of representation theorems. An example of such result is Talalyan’s
theorem [39] (see also [8]) namely, for each measurable function on [0, 1] there
exists a Faber-Schauder series, with coefficients converging to zero, that con-
verges to the function almost everywhere. This is an analogue of (Lusin’s [28])
Menchoff’s [29] theorem for the trigonometric system. Note that these expan-
sions do not converge unconditionally, and it is known that there is no uncon-
ditional basis for L[0, 1] or C[0, 1] (see [20]). Nevertheless, in [15] it is proved
that for every ε ∈ (0, 1) there exists a measurable set E ⊂ [0, 1] with measure
µ(E) > 1 − ε, such that for every function f(x) ⊂ [0, 1] there is a series with re-
spect to Faber-Schauder system which unconditionally converges to f(x) on E.
It should be noted that this is a sharp result, since the set E in the statement
cannot be replaced by [0, 1]. There are also a lot of results connected with
Faber-Schauder system ( [14], [13], [26], [12], [33]).

Since there is no unconditional basis in L1, Faber-Schauder system is
not an unconditional basis in L1. In this paper we will prove that the Faber-
Schauder system is an unconditional representation system for L[0, 1]. More-
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over, the following theorem is true.

Theorem 1.0.1. For any natural number m0 and for each f ∈ L[0, 1) there ex-
ists a Faber-Schauder series

∞∑
n=m0

bnφn(x), with coefficients converging to zero,
which converges unconditionally to f in the norm of L[0, 1).

It is easy to see that this theorem is not true for the other classical (trigono-
metric, Walsh, Haar, Franklin. . . ) systems.

The functions of the Faber-Schauder system, Φ = {φn : n = 0, 1, . . .}, are the
continuous, piecewise–linear functions on [0, 1], given by φ0(x) = 1, φ1(x) = x,
and for n = 2k + i, k = 0, 1, . . . ; i = 1, . . . , 2k, we have

φn(x) := φ
(i)
k (x) =

0, if x ̸∈ ( i−1
2k
, i
2k
),

1, if x = xn = x
(i)
k = 2i−1

2k+1 ,

and is linear and continuous on the intervals
[
i−1
2k
, 2i−1
2k+1

]
,
[
2i−1
2k+1 ,

i
2k

]
. Define the

linear functionals are given by

A0(f) = f(0), A1(f) = f(1)− f(0),

and for n > 1

An(f) = Ak,i(f) = f

(
2i− 1

2k+1

)
− 1

2

[
f

(
i− 1

2k

)
+ f

(
i

2k

)]
.

Recall that the Faber-Schauder system is a basis for the space C[0, 1] (see
[34]).

Moreover, for each function f(x) ∈ C[0, 1] the series
∞∑
n=0

An(f)φn(x),

converges uniformly to f on [0, 1].
We denote the support of the function φn(x) = φ

(i)
k (x) by ∆n = ∆

(i)
k . We will

consider functions of the form f =
2p∑
ν=1

γνχ[ ν−1
2p

, ν
2p

) dyadic step–functions of rank
p.

As we know there are functions in C[0, 1] that cannot be represented by
Faber-Schauder series converging unconditionally in C[0, 1].

The proof of the Theorem is based on a proper approximation of the char-
acteristic functions of dyadic intervals by Faber-Schauder polynomials of high
rank.
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1.1 Auxiliary lemmas

Lemma 1.1.1. Let ∆ =
[
i−1
2p
, i
2p

)
, γ ̸= 0, ε ∈ (0, 1), and N0 be a natural number.

There exists a Faber-Schauder polynomial

Q(x) =
N∑

n=N0

Anφn(x)

such that
|An| ≤ |γ|, ∀n ∈ [N0, N ],

1∫
0

∣∣Q(x)− γχ∆(x)
∣∣ dx < ε,

N∑
n=N0

|An|φn(x) = 0, if x ∈ [0, 1]\∆,

1∫
0

∣∣∣∣∣
N∑

n=N0

|An|φn(x)

∣∣∣∣∣ dx < 2|γ|µ(∆).

Proof. If N0 ≤ 2p + i, let q ∈ N satisfy the inequality q > log2(
|γ|
ε
) + 1, where

0 < ε < µ(∆), and let

E = ∆\
[(

i− 1

2p
,
i− 1

2p
+

1

2q

)
∪
(
i

2p
− 1

2q
,
i

2p

)]
,

and

g(x) = γφ(i)
p (x) +

γ

2

{
q−p−1∑
k=1

φ
(2tk−1)
p+k (x) +

q−p−1∑
k=1

φ
(2hk)
p+k (x)

}
,

where t1 = h1 = 1, tk+1 = 2tk − 1, and hk+1 = 2hk, for k ≥ 1. The right member is a
Faber-Schauder polynomial of the required type.

If N0 > 2p + i, then some of the dyadic points xn, with n < N0, lie in ∆.
Denoting these by xn1 , xn2 , . . . , xnℓ

, one chooses q ∈ N such that q > log2(
|γ|(ℓ+1)

ε
)+1,

takes

E = ∆\

[
ℓ⋃
i=1

(
xnj

− 1

2q
, xnj

+
1

2q

)
∪
(
i− 1

2p
,
i− 1

2p
+

1

2q

)
∪
(
i

2p
− 1

2q
,
i

2p

)]
,

and defines the continuous function g by

g(x) =

γ, if x ∈ E,

0, if x ∈ ([0, 1]\∆) ∪ {xnj
; 1 ≤ j ≤ ℓ},
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and g is linear on each of the intervals [xnj
− 1

2q
, xnj

], [xnj
, xnj

+ 1
2q
], for 1 ≤ j ≤ ℓ,

[ i−1
2p
, i−1

2p
+ 1

2q
], and [ i

2p
− 1

2q
, i
2p
].

One has 2q > N0, max(g(x)) = |γ|, and µ(E) > µ(∆)− ε
2|γ| .

The Faber-Schauder expansion g(x) =
∑
Anφn(x) is a polynomial of the

required type, since one has An = 0, if n < N0, or n > 2q, or if N0 ≤ n ≤ 2q and
∆n ⊂ E or ∆n ⊆ ∆, and, for those n ∈ [N0, 2

q] for which ∆n ⊂ ∆, one has An = γ
2

or γ according as g(x) = 0 at one or both end points of ∆n. Therefore

g(x) =
N∑

n=N0

Anφn(x) := Q(x), N = 2q.

|An| ≤ |γ|, Anγ ≥ 0, ∀n ∈ [N0, N ].

It is not hard to see that
1∫

0

∣∣Q(x)− γχ∆(x)
∣∣ dx =

∫
∆

|Q(x)− γ| dx < 2

∫
∆\E

|γ| dx ≤ ε,

N∑
n=N0

|An|φn(x) = 0, if x ∈ [0, 1]\∆,

∫
∆

(
N∑

n=N0

|An|φn(x)

)
dx < 2|γ|µ(∆).

Lemma 1.1.2. Let ∆ =
[
i−1
2p
, i
2p

)
and the numbers γ ̸= 0, N0 ∈ N, ε ∈ (0, 1), be

given. There exist a Schauder polynomial

Q(x) =
N∑

n=N0

Anφn(x)

such that
|An| ≤ ε, ∀n ∈ [N0, N ],

1∫
0

∣∣Q(x)− γχ∆(x)
∣∣ dx < ε,

N∑
n=N0

|An|φn(x) = 0, if x ∈ [0, 1]\∆,

1∫
0

(
N∑

n=N0

|An|φn(x)

)
dx < 2|γ|µ(∆).
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Proof. Let ν0 > 2|γ|
ε
, ν0 ∈ N. Repeated application of Lemma 1.1.1 yields a

sequence of Schauder polynomials {Qν(x)}ν0ν=1

Qν(x) =
Nν−1∑
n=Nν−1

A(ν)
n φn(x); Nν > Nν−1,

such that
1∫

0

∣∣∣∣Qν(x)−
γ

ν0
χ∆(x)

∣∣∣∣ dx < ε

ν0
,

Nν−1∑
n=Nν−1

|A(ν)
n |φn(x) = 0, if x ∈ [0, 1]\∆,

|A(ν)
n | ≤ |γ|

ν0
, ∀n ∈ [Nν−1, Nν),

1∫
0

Nν−1∑
n=Nν−1

|An|φn(x)dx < 2

∣∣∣∣ γν0
∣∣∣∣µ(∆).

Setting

Q(x) =

ν0∑
ν=1

Qν(x) =
N∑

n=N0

Anφn(x),

where An = A
(ν)
n , n ∈ [Nν−1, Nν) (ν = 1, 2, . . . , ν0), N = Nν0 − 1

|An| ≤
|γ|
ν0

≤ ε, ∀n ∈ [N0, N ].

We get
1∫

0

∣∣Q(x)− γχ∆(x)
∣∣ dx < ε,

N∑
n=N0

|An|φn(x) = 0, if x ∈ [0, 1]\∆,

1∫
0

(
N∑

n=N0

|An|φn(x

)
)dx < 2|γ|µ(∆).

Lemma 1.1.3. Let ∆ν = [ν−1
2p
, ν
2p
) : 1 ≤ ν ≤ 2p be the dyadic partition of [0, 1] of

rank p, let f =
2p∑
ν=1

γνχ∆ν
be a real step function, and let N0 ∈ N, ε ∈ (0, 1) be

specified. There is a Schauder polynomial

Q(x) =
N∑

n=N0

Anφn(x)
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such that
|An| ≤ ε, ∀n ∈ [N0, N ],

1∫
0

|Q(x)− f(x)| dx < ε,

and, for each B ⊂ {N0, . . . , N},

1∫
0

∣∣∣∣∣∑
n∈B

Anφn(x)

∣∣∣∣∣ dx ≤
1∫

0

(
N∑

n=N0

|An|φn(x)

)
dx ≤ 2

1∫
0

|f(x)|dx

Proof. Repeated application of Lemma 1.1.2 yields a sequence of Schauder
polynomials {Qν(x)}2

p

ν=1

Qν(x) =
Nν−1∑
n=Nν−1

Anφn(x)

such that
|An| ≤ ε, ∀n ∈ [Nν−1 , Nν − 1], 1 ≤ ν ≤ 2p,

1∫
0

∣∣Qν(x)− γνχ∆ν
(x)
∣∣ dx < ε,

Nν−1∑
n=Nν−1

|An|φn(x) = 0, if x ∈ [0, 1]\∆ν

1∫
0

 Nν−1∑
n=Nν−1

|An|φn(x)

 dx < 2|γν |µ(∆ν),

Setting

Q(x) =
2p∑
ν=1

Qν(x) =
2p∑
ν=1

Nν−1∑
n=Nν−1

Anφn(x) =
N∑

n=N0

Anφn(x),

one has
1∫

0

|Q(x)− f(x)| dx =
2p∑
ν=1

∫
∆ν

|Qν (x)− γν | dx ≤ ε

1∫
0

(
N∑

n=N0

|An|φn(x)

)
dx =

2p∑
ν=1

∫
∆ν

 Nν−1∑
n=Nν−1

|An|φn(x)

 dx ≤

≤
2p∑
ν=1

2|γν |µ(∆ν) = 2

1∫
0

|f(x)| dx
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1.2 Proof of the theorem

Proof. Let m0 be a natural number and f(x) ∈ L[0, 1].
It is easy to see that there exist f1 dyadic step function such that

∥f − f1∥ =

1∫
0

|f(x)− f1(x)| dx < 2−2.

By virtue of Lemma 1.1.3, there is a Faber-Schauder polynomial

Q1(x) =

m1−1∑
n=m0

Anφn(x)

such that
|An| < 2−2, ∀n ∈ [m0,m1),

∥Q1 − f1∥ ≤ 2−2,

and for each B1 ⊂ {m0, . . . ,m1 − 1},∥∥∥∥∥∑
n∈B1

Anφn(x)

∥∥∥∥∥ ≤ 2∥f1∥.

Let the dyadic step function f2 satisfy

∥(f −Q1)− f2∥ < 2−4,

and again apply Lemma 1.1.3. We get a Faber-Schauder polynomial

Q2(x) =

m2−1∑
n=m1

Anφn(x)

such that
|An| < 2−4, ∀n ∈ [m1,m2),

∥Q2 − f2∥ ≤ 2−4,

and, for each B2 ⊂ {m1, . . . ,m2 − 1},∥∥∥∥∥∑
n∈B2

Anφn(x)

∥∥∥∥∥ ≤ 2∥f2∥.

Then
∥f − (Q1 +Q2)∥ ≤ 2−3,

and, since
∥f2∥ ≤ 3

23
,
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we obtain ∥∥∥∥∥∑
n∈B2

Anφn(x)

∥∥∥∥∥ ≤ 3

22
.

Continuing this process, one determines a sequence {Qj(x)}∞j=1 of Faber-
Schauder polynomials,

Qj(x) =

mj−1∑
n=mj−1

Anφn(x),

such that
|An| < 2−2j, ∀n ∈ [mj−1,mj),∥∥∥∥∥f(x)−

n∑
j=1

Qj(x)

∥∥∥∥∥ ≤ 2−(n+1),

and, for each Bn ⊂ {mn−1, . . . ,mn − 1},∥∥∥∥∥∑
n∈Bn

Anφn(x)

∥∥∥∥∥ < 3

2n
.

As n→ ∞, j → ∞ thus An converges to 0.
Further, from this it follows that the series

∞∑
n=m0

Anφn =
∞∑
j=1

mj−1∑
n=mj−1

Anφn

converges unconditionally to f(x) in the norm L[0, 1].
Indeed, if π is a permutation of N, then we choose Nn so that {π(k) : m0 ≤

k < Nn} ⊃ {i : m0 ≤ i < mn}. Thus, for arbitrary M > Nn we obtain∥∥∥∥∥f(x)−
M∑

k=m0

A
π(k)

φ
π(k)

(x)

∥∥∥∥∥ ≤

≤

∥∥∥∥∥f(x)−
n∑
j=1

Qj(x)

∥∥∥∥∥+
∞∑

j=n+1

3

2j
<

1

2n+1
+

3

2n
=

7

2n
.

Letting M → ∞, n → ∞, thus we get that for every permutation π(k) the
series

M∑
k=m0

A
π(k)

φ
π(k)

(x) converges to f(x) in L1.
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2 Problems of Recovering from

Fourier-Vilenkin series

Recovering problems include a wide range of problems in mathematical
analysis and applied mathematics. For example, many problems of interpola-
tion and approximation are reduced to constructing procedures that allow to
approximately restore the values of functions from a certain class by its values
on a finite set of points (see [2]).

Recovering problems for orthogonal series is in a different kind. The prob-
lems of recovering integrable functions from their expansions in orthogonal
series, in particular, in the Fourier series, are studied. Alsomthe problem of
recovering the coefficients of orthogonal series form their sums is considered.

In comparison with the problems of interpolation and approximation, we
will expand the sets where the function is assumed to be known, from finite to
of small but positive measure. But at the same time we will give a complete
recovering of function, rather then approximate.

The main results of this section are in the section 2.3. As the domain of
functions we will consider Vilenkin groups G (see [9], [36]) instead the unit
segment [0, 1]. Theorem 2.3.4 establishes the existence of δ-recovering set E,
for all f ∈ L(G), as well as a recovering procedure of a function f from its
values on E. Theorem 2.3.2 provides a formula for calculating the Fourier-
Vilenkin-Chrestenson coefficients of f from its values on E.

2.1 Preliminaries

Consider an arbitrary sequence of prime numbers

P = {p0, p1, . . . , pk, . . . }, pk ≥ 2, k ≥ 0. (2.1.1)

The only requirement to pk numbers that, there must exist supk≥0(pk).
Using P we define a set of sequences of integers of the form

g = (g0, g1, . . . , gk, . . . ), gk ∈ {0, . . . , pk − 1}, k ≥ 0. (2.1.2)

This set is called the Vilenkin groupG = G(P). The null element is the sequence
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0 = (0, 0, . . . , 0, . . . ) and the group operation on G is the term-wise addition mod-
ulo pk i.e.

g ⊕ ǵ = {gk ⊕ ǵk}∞i=0, gk ⊕ ǵk = gk + ǵk (mod pk).

We set

m0 = 1, mk =
k−1∏
s=0

ps.

The group G can be represented as the modified closed interval [0, 1]∗P ,
which is the interval [0, 1] with the P-adic rational points g = p/mk ∈ (0, 1), k ≥

1, p = 1, . . . ,mk − 1, counted twice: the left point p/mk − 0 corresponds to the
infinite P-adic expansion

∑∞
i=0 gk/mk+1 while the right point p/mk+0 corresponds

to the finite one.
We put

Gk := {g ∈ G : gs = 0 if s ≤ k − 1}.

Gk are subgroups of G.
The sets g ⊕Gk, where g ∈ G, k ∈ N are called P-adic Vilenkin intervals of

rank k. Each P-adic Vilenkin interval of rank k can be respresented asmodified
segment

∆t
k :=

[
t

mk

+ 0,
t+ 1

mk

− 0

]
⊂ [0, 1]∗, t = 0, . . . ,mk − 1.

We will write ∆k for a Vilenkin interval of rank k.
Let τ be the normalized Haar measure on G. We have

τ(g ⊕Gk) = τ(∆k) =
1

mk

Let Ψ be the dual group of G, i.e., the group of characters of G. Ψ is a
discrete abelian group with respect to the point-wise multiplication of charac-
ters (see [17], §23; [35], Appendices). The group Ψ consists of ψ ≡ 1 and of all
finite products of the generalized Rademacher functions rk, k ∈ N, which are
defined by

rk(g) = exp
(
2πi

gk
pk

)
, g ∈ G, i =

√
−1.

The elements of Ψ are called the Vilenkin–Chrestenson functions. Γ is a union
of increasing sequence of finite subgroups:

Ψ0 ⊂ Ψ1 ⊂ · · · ⊂ Ψk ⊂ · · · ⊂
∞⋃
k=0

Ψk = Ψ, Ψ0 = {ψ ≡ 1},
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Ψk =

{
ψ ∈ Ψ: ψ =

k−1∏
s=0

(rs)
ψs , ψs ∈ {0, . . . , ps − 1}

}
, k ≥ 1.

In the Paley enumeration the Vilenkin-Chrestenson functions are given
by

ψn(g) = exp
(
2πi

∞∑
k=0

gknk
pk

)
where {nk}∞k=0 is the P-adic expansion of n, i.e.

n =
∞∑
k=0

nkmk, nk ∈ {0, . . . , pk − 1}.

If n ≤ mk − 1, then ψn is constant on each Vilenkin interval of rank k. We write
ψn(∆) for the constant value of ψn on ∆.

The system {ψn}∞n=0 is orthonormal in L2(G, τ).
For the case when all pk = 2, k = 0, 1, . . . , Vilenkin-Chrestenson system

coincides with the Walsh one and the group G(P) coincides with the Cantor
dyadic group.

Let
∫
∆
fdτ be the Lebesgue integral of an integrable function f over a

Borel set ∆, with respect to τ .
The series

∞∑
n=0

anψn, an ∈ C (2.1.3)

is called Vilenkin-Chrestenson series.
Let an(f) denote the Fourier coefficients of f function with respect to the

Vilenkin-Chrestenson system:

an(f) :=

∫
G

fψndτ n ∈ N

Let B be the minimal ring containing all Vilenkin intervals. By QM(G)

we denote the set of all quasi measures, which are finitely additive complex-
values set functions λ : B → C.

The set QM(G) is linearly isomorphic to the set of all (2.1.3) series. The
canonical isomorphism is constructed as follows. Each series (2.1.3) gener-
ates a quasi-measure λ such that,

λ(∆k) = λ(g ⊕Gk) =

mk−1∑
n=0

anψnτ(g ⊕Gk) =
1

mk

mk−1∑
n=0

anψn.
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Inversely, (2.1.3) is the Fourier series of λ with respect to the Vilenkin-
Chrestenson system. This means that, for suitable choice of the concept of an
integral, an = an(λ) whenever n ∈ N where

an(λ) :=

∫
G

ψndλ (2.1.4)

are F-V-CH coefficients of λ. If f ∈ L(G) then the set function defined by the
rule

λ(E) =

∫
E

fdτ, E ∈ B, (2.1.5)

is a quasi-measure.For details, see: [9], Ch. 3; [35], Ch. 7; [30]. From Remark
2.2 in [30] follows that an(λ) = an(f) for all n.

2.2 Auxiliary lemmas

Suppose we given r, q, k ∈ N such that r ≤ q ≤ k (r, q, k will always satisfy
this condition everywhere in this section). Consider the set

Gq,k := {g ∈ G : gs = 0 if q ≤ s ≤ k − 1}

Remark 2.2.1. The set Gq,k is a union ofmq pairwise disjoint Vilenkin intervals
of rank k. In other words,

Gq,k =

mq−1⋃
s=0

∆
s
mk
mq

k

We put

Nr,q,k :=

{
r−1∑
s=0

nsms +
k−1∑
s=q

nsms, ns ∈ {0, . . . , ps − 1}

}
,

Ñr,q,k := Nr,q,k\{0, . . . ,mr − 1} =

{
n ∈ Nr,q,k :

k−1∑
s=q

ns > 0

}
.

Trivially,
#Ñr,q,k =

mrmk

mq

−mr, min(Ñr,q,k) = mq (2.2.1)

Reducing Lemma 2.2 in [31], we have

τ(∆r ∩Gq,k) =
mq

mkmr

. (2.2.2)

For any λ ∈ QM(G) and g ∈ G, reducing Lemma 2.3 in [31] we get

λ(g ⊕Gr)−
mk

mq

λ((g ⊕Gr) ∩Gq,k) = − 1

mr

∑
n∈Ñr,q,k

an(λ)ψn(g). (2.2.3)
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Lemma 2.2.1. We have∫
g⊕Gr

fdτ − mk

mq

∫
(g⊕Gr)∩Gq,k

fdτ = − 1

mr

∑
n∈Ñr,q,k

an(f)ψn(g). (2.2.4)

whenever f ∈ L(G) and g ∈ G.

Proof. Taking equation (2.2.3) and the quasi-measure λ defined by (2.1.5) we
can easily obtain (2.2.4).

Lemma 2.2.2. Under the conditions of Lemma 2.2.1,∣∣∣∣λ(g ⊕Gr)−
mk

mq

λ((g ⊕Gr) ∩Gq,k)

∣∣∣∣ ≤ mk

mq

max
n≥mq

|an(λ)|, (2.2.5)

∣∣∣∣∣∣∣
∫

g⊕Gr

fdτ − mk

mq

∫
(g⊕Gr)∩Gq,k

fdτ

∣∣∣∣∣∣∣ ≤
mk

mq

max
n≥mq

|an(f)|. (2.2.6)

Proof. We have that an = an(f) = an(λ)∣∣∣∣∣∣ 1mr

∑
n∈Ñr,q,k

anψn(g)

∣∣∣∣∣∣ ≤ 1

mr

∑
n∈Ñr,q,k

|an| |ψn(g)|

≤ 1

mr

∑
n∈Ñr,q,k

|an|
(2.2.1)

≤ mk

mq

max
n≥mq

|an|.

Combining these estimations with (2.2.3) or (2.2.4), we get, respectively (2.2.5)
or (2.2.6).

2.3 Main results

Let Q = {q(s)}∞s=1 and K = {k(s)}∞s=1 be increasing sequences of positive
integers satisfying

k(s) ≤ q(s+ 1) ≤ k(s+ 1), s ∈ N (2.3.1)

We set
E :=

∞⋃
s=1

Gq(s),k(s).

It follows form Remark 2.2.1 that Gq(s),k(s) is a union of mq(s) pairwise disjoint
Vilenkin intervals of rank k. In other words,

Gq(s),k(s) =

mq(s)−1⋃
s=0

∆
s
mk(s)
mq(s)

k(s) .

20



Lemma 2.3.1. (see [31] Lemma 3.3)

τ(E) = 1−
∞∏
s=1

(
1−

mq(s)

mk(s)

)
. (2.3.2)

In the theorems bellow, suppose that δ > 0 and A = {An}∞n=0 ↓ are given.

Theorem 2.3.1. There exist increasing sequences Q = {q(s)}∞s=1 and K =

{k(s)}∞s=1 of natural numbers, satisfying (2.3.1), for which the following state-
ments hold.

• τ(E) < δ.

• Let λ be any quasi-measure whose F-V-Ch coefficients an(λ) are majorized
by A:

|an(λ)| ≤ An, n ≥ 0.

Then λ can be completely recovered by:

λ(∆r) = lim
s→∞

mk(s)

mq(s)

λ(∆r ∩Gq(s),k(s)) (2.3.3)

Proof. We will take {εs}∞s=1 ↓ 0 positive numbers and {ℓs}∞s=0 positive integers
satisfying

∞∏
s=1

(
1− 1

2ℓ(s)

)
> 1− δ (2.3.4)

Let ρ := sup
k≥0

pk.
For each s ∈ N we can find q(s) such that

An ≤ εs
ρℓ(s)

, n ≥ mq(s). (2.3.5)

We set
k(s) := q(s) + ℓ(s) (2.3.6)

Now let us show that {q(s)}∞s=1 and {k(s)}∞s=1 satisfy the desired conditions.

τ(E)
(2.3.2)
= 1−

∞∏
s=1

(
1−

mq(s)

mk(s)

)
= 1−

∞∏
s=1

(
1− 1

pq(s) . . . pk(s)−1

)
≤

(2.3.6)
≤ 1−

∞∏
s=1

(
1− 1

2ℓ(s)

)
(2.3.4)
< δ.

For q(s), k(s) ≥ r, we obtain,∣∣∣∣λ(∆r)−
mk

mq

λ(∆r ∩Gq,k)

∣∣∣∣ (2.2.5)≤ mk

mq

max
n≥mq

|an(λ)|,
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≤ mk

mq

max
n≥mq

|An|
(2.3.5)
≤ εs.

Theorem 2.3.2. Let λ be any quasi-measure whose F-V-Ch coefficients an(λ)
aremajorized by A. Then all an(λ) can be faund, using the formula

an(λ) = lim
s→∞

1

mq(s)

mr−1∑
t=0

ψn(∆
t
r)

∑
∆k(s)⊂(∆t

r∩Gq(s),k(s))

Smk(s)
(∆k(s)), n < mr (2.3.7)

Proof. For each n < mr, we get

an(λ)
(2.1.4)
=

∫
G

ψndλ =
mr−1∑
t=0

ψn(∆
t
r)λ(∆

t
r) =

(2.3.3)
=

mr−1∑
t=0

ψn(∆
t
r) lim

s→∞

mk(s)

mq(s)

λ(∆t
r ∩Gq(s),k(s)) =

= lim
s→∞

mk(s)

mq(s)

mr−1∑
t=0

ψn(∆
t
r)

∑
∆k(s)⊂(∆t

r∩Gq(s),k(s))

λ(∆k(s)) =

= lim
s→∞

1

mq(s)

mr−1∑
t=0

ψn(∆
t
r)

∑
∆k(s)⊂(∆t

r∩Gq(s),k(s))

Smk(s)
(∆k(s)).

Theorem 2.3.3. Assume that the F-V-Ch coefficients an(f) of a function f ∈

L(G) are majorized by A. Then f can be recovered by the following two-step
procedure: ∫

g⊕Gr

fdτ = lim
s→∞

mk(s)

mq(s)

∫
(g⊕Gr)∩Gq(s),k(s)

fdτ, g ∈ G, r ∈ N (2.3.8)

f(g) = lim
r→∞

mr

∫
g⊕Gr

fdτ (a.e.onG). (2.3.9)

Proof. Take the quasi-measure λ defined by (2.1.5), applying (2.3.3) to interval
g ⊕ Gr we obtain (2.3.8). Formula (2.3.9) is a corollary of the theorem on
differentiation of primitives of summable functions.

Theorem 2.3.4. If f ∈ L(G) and δ > 0, then there exists an open set E(f, δ)
such that τ(E) < δ and almost all values of f can be recovered via its values on
E by analogues of formulas (2.3.8) and (2.3.9).

22



Proof. Let an(f) be the F-V-Ch coefficients of the function f . Consider the se-
quence A = {An}∞n=0, An = supk≥n(|ak(f)|). It is easy to see that {An} is non-
increasing and converges to 0. Clearly an(f) are majorized by A. Applying
theorem 2.3.1 for δ and A we get the set E. It remains to apply theroem 2.3.3
for E and A.
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3 On the Divergence of Fourier Series with

Respect to the General Haar System

Let {fn(x)}∞n=1 be a sequence of functions, fn : [0, 1] → R for all n.

Definition 3.0.1. D ⊂ [0, 1] is a divergence set of
∞∑
n=1

fn(x) functional series if
that series is divergent when x ∈ D, and is convergent when x /∈ D.

There are many results connected with divergence sets of Fourier series
with respect to classical systems. We will discuss some of them that connected
with the Fourier series with respect to the classical Haar system.

A. Haar [16] proved that the Fourier-Haar series of any function continu-
ous on [0, 1] is uniformly convergent, and for any measurable function Fourier-
Haar series of that function is convergent almost everywhere on [0, 1].

V. I. Prokhorenko [32] proved that for any countable set F ⊂ [0, 1] there
exists a bounded function, such that the Fourier-Haar series of that function
is divergent on F and convergent on [0, 1]\F .

V. M. Bugadze [3] proved that for any set with 0 measure, there exist
bounded function such that the Fourier-Haar series of that function is diver-
gent on that set.

It is also worth mentioning [23], [27].
There are similar results for Fourier-Walsh Series (see [3], [10], [24],

[25]), and for trigonometric Fourier series (see [6], [7], [18], [37], [38], [40]).
In this paper, we prove the following theorem.

Theorem 3.0.1. For any countable D ⊂ [0, 1] set and ε > 0, there exists a
f : [0, 1] → R bounded function, such that µ(supp(f)) < ε, and D is a divergence
set of the Fourier series of f function with respect to the regular general Haar
system.

We will recall the definition of the regular general Haar system in the
next section.

It would be interesting to find out the answer to the following question:

Question 3.0.1. Is this Theorem true for every general Haar system?

There are other interesting results connected with the general Haar sys-
tem that worth mentioning in this paper (see [11], [19], [22]).
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3.1 Preliminaries

Let us recall the definition of the general Haar system {hn}∞n=1, normalized
in L2[0, 1].

Let t0 = 0, t1 = 1, A
(1)
1 ≡ [0, 1], we define h1(x) by:

h1(x) := χ[0,1](x).

Let t2 ∈ (0, 1), A
(2)
1 ≡ [0, t2), A

(2)
2 ≡ [t2, 1], ∆2 ≡ A

(1)
1 ≡ [0, 1], ∆+

2 ≡ [0, t2), ∆
−
2 ≡

[t2, 1], we define h2(x) by:

h2(x) :=


√

µ(∆−
2 )

µ(∆+
2 )µ(∆2)

, if x ∈ ∆+
2 ,

−
√

µ(∆+
2 )

µ(∆−
2 )µ(∆2)

, if x ∈ ∆−
2 .

Let t0, t1, . . . , tn(n ≥ 2) be already chosen. Let A(n)
1 , A

(n)
2 , . . . , A

(n)
n be intervals,

enumerated from the left to the right, that we get after splitting [0, 1] by {tk}nk=2

points. Each interval is half-open to the right except the last interval A(n)
n ,

which is closed, so we have that every point from [0, 1] is in exactly one interval.
Let tn+1 ∈ (0, 1)\{t2, . . . , tn} is the next point. Then for some k0 ∈ [1, n], tn+1 ∈

A
(n)
k0
. Let ∆n+1 ≡ A

(n)
k0
.

If k0 = n, ∆n+1 ≡ A
(n)
n ≡ [a, 1]. Let ∆+

n+1 ≡ [a, tn+1), ∆
−
n+1 ≡ [tn+1, 1].

If 1 ≤ k0 < n, ∆n+1 ≡ A
(n)
k0

≡ [b, c). Let ∆+
n+1 ≡ [b, tn+1), ∆−

n+1 ≡ [tn+1, c), we
define hn+1(x) by:

hn+1(x) :=



√
µ(∆−

n+1)
µ(∆+

n+1)µ(∆n+1)
, if x ∈ ∆+

n+1,

−
√

µ(∆+
n+1)

µ(∆−
n+1)µ(∆n+1)

, if x ∈ ∆−
n+1,

0, if x ∈ [0, 1]\∆n+1.

The only requirement to the points tn is that the set T = {tk}∞k=0 to be dense in
[0, 1], i.e.

lim
n→∞

max
1≤k≤n

µ
(
A

(n)
k

)
= 0. (3.1.1)

Note that if T =
{
0, 1, 1

2
, 1
4
, 3
4
, 1
8
, 3
8
, 5
8
, 7
8
, . . .

}
we get the classical Haar system

(see [1, chapter 1, §6], [21, chapter 3, §1]).
For each T (dense in [0, 1]), the corresponding Haar system is a complete

orthonormal system in L2[0, 1], and it is a basis in each Lp[0, 1], 1 ≤ p <∞. Since
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the Haar system is a sequence of martingale differences, it follows from D. L.
Burkholder’s results on unconditionality of martingale differences ( [4], [5])
that every general Haar system is an unconditional basis in Lp[0, 1], 1 ≤ p <∞.

The general Haar system is called regular if there exists real number λ ≥ 1

such that for any natural number n > 1:

1

λ
≤ µ (∆+

n )

µ (∆−
n )

≤ λ, λ ≥ 1. (3.1.2)

Note that the classical Haar system is regular and λ = 1.
Let x ∈ [0, 1] and n ≥ 2 is a natural number then for some k0 ∈ [1, n], x ∈ A

(n)
k0
.

We set
A

(n)
[x] :≡ A

(n)
k0
,

and for n = 1

A
(1)
[x] :≡ A

(1)
1 ≡ [0, 1].

Let cn(f) denote the Fourier coefficients of f function with respect to the
general Haar system:

cn(f) :=

1∫
0

f(t)hn(t)dt (3.1.3)

Let Dn(x, t) denote the Dirichlet kernel of the general Haar system:

Dn(x, t) :=
n∑
k=1

hk(x)hk(t) (3.1.4)

Let Sn(f ;x) denote the partial Fourier sum of order n of f function with
respect to the general Haar system:

Sn(f ;x) :=
n∑
k=1

ck(f)hk(x) (3.1.5)

From (3.1.3),(3.1.4) and (3.1.5) it is easy to see that

Sn(f ;x) =

1∫
0

f(t)Dn(x, t) (3.1.6)

3.2 Auxiliary lemmas

Lemma 3.2.1. For any natural number n:

Sn(f ;x) =
1

µ
(
A

(n)
[x]

) ∫
A

(n)
[x]

f(t)dt (3.2.1)

26



Proof. We will prove this lemma by using principle of mathematical induction.
Base case.

S1(f ;x) = c1(f)h1(x) = c1(f) =

1∫
0

f(t)h1(t)dt =

1∫
0

f(t)dt

having µ
(
A

(1)
[x]

)
= µ ([0, 1]) = 1, (3.2.1) holds for n = 1.

Inductive Step. Fix n ≥ 1 and suppose that (3.2.1) holds for n. It remains
to show that (3.2.1) holds for n+ 1.

Sn+1(f ;x) = Sn(f ;x) + cn+1(f)hn+1(x)

There are two cases, x ∈ ∆n+1 or x /∈ ∆n+1.
Let x /∈ ∆n+1:

Sn+1(f ;x) = Sn(f ;x) =
1

µ
(
A

(n)
[x]

) ∫
A

(n)
[x]

f(t)dt =
1

µ
(
A

(n+1)
[x]

) ∫
A

(n+1)
[x]

f(t)dt

now let x ∈ ∆n+1:

Sn+1(f ;x) =


Sn(f ;x) +

√
µ(∆−

n+1)
µ(∆+

n+1)µ(∆n+1)

1∫
0

f(t)hn+1(t)dt, x ∈ ∆+
n+1

Sn(f ;x)−
√

µ(∆+
n+1)

µ(∆−
n+1)µ(∆n+1)

1∫
0

f(t)hn+1(t)dt, x ∈ ∆−
n+1

=

=


1

µ(∆n+1)

∫
∆n+1

f(t)dt+
µ(∆−

n+1)
µ(∆+

n+1)µ(∆n+1)

∫
∆+

n+1

f(t)dt− 1
µ(∆n+1)

∫
∆−

n+1

f(t)dt, x ∈ ∆+
n+1

1
µ(∆n+1)

∫
∆n+1

f(t)dt+
µ(∆+

n+1)
µ(∆−

n+1)µ(∆n+1)

∫
∆−

n+1

f(t)dt− 1
µ(∆n+1)

∫
∆+

n+1

f(t)dt, x ∈ ∆−
n+1

=

=


1

µ(∆+
n+1)

∫
∆+

n+1

f(t)dt, x ∈ ∆+
n+1

1

µ(∆−
n+1)

∫
∆−

n+1

f(t)dt, x ∈ ∆−
n+1

Therefore (3.2.1) holds for n+ 1.

Remark 3.2.1. Equation (3.2.1) is obtained by A. Haar [16] for classical Fourier-
Haar series (see also [1, chapter 1, §6], [21, chapter 3, §1]).

Lemma 3.2.2. Let {hn}∞n=1 is regular general Haar system, for any point x0 ∈

[0, 1] and ε > 0, there exists a function f : [0, 1] → R satisfying the following
conditions:
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I. 0 ≤ f(x) ≤ 1 for all x ∈ [0, 1]

II. For each point x ∈ [0, 1]\{x0}, there exists a natural number n0 = n0(x0, x)

such that
Sn(f ;x) = Sn0(f ;x), for all n > nk, n ∈ N

III. µ (supp(f)) < ε

IV. There exist natural numbers ps ↗ ∞ and qs ↗ ∞, ps > qs, ps = ps(x0),
qs = qs(x0) such that
|Sps(f ;x0)− Sqs(f ;x0)| ≥ 1

(λ+1)2
, for all s ∈ N

Proof. Let us take {ki}∞i=1 increasing sequence of natural numbers, so that x0 ∈
∆ki for every i (such sequence exists due to (3.1.1)). When i = 1 we get k1 = 2

since ∆2 ≡ [0, 1] is the first interval that includes x0. We denote ∆ki [x0] and
∆̃ki [x0] as:

∆ki [x0] :=

∆+
ki
, x0 ∈ ∆+

ki

∆−
ki
, x0 ∈ ∆−

ki

(3.2.2)

∆̃ki [x0] := ∆ki\∆ki [x0] (3.2.3)

Since x0 ∈ ∆ki [x0] we have:

∆ki [x0] ≡ A
(ki)
[x0]

(3.2.4)

The next ∆ki+1
interval must include x0, thus we have:

∆ki+1
≡ ∆ki [x0] ≡ ∆ki+1

[x0] ∪ ∆̃ki+1
[x0] (3.2.5)

µ
(
∆ki+1

)
= µ (∆ki [x0]) = µ

(
∆ki+1

[x0]
)
+ µ

(
∆̃ki+1

[x0]
)

(3.2.6)

Since {hn}∞n=1 is regular general Haar system (3.1.2), we have:

1

λ
≤ µ (∆ki [x0])

µ
(
∆̃ki [x0]

) ≤ λ, λ ≥ 1 (3.2.7)

Let s0 be the integer part of the number 1
2
log λ

λ+1

ε
λ+1

, i.e.

s0 =

[
1

2
log λ

λ+1

ε

λ+ 1

]
(3.2.8)
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We will define f(x) as:

f(x) = χ ∞⋃
s=s0

Es

(x), where Es ≡ ∆̃k2s+1 [x0] (3.2.9)

Therefore f(x) satisfies (I.).
For any point x ∈ [0, 1], x ̸= x0, there exists a natural number n0 such that

f(x) is constant on A(n0)
[x] , that is f(x) is equal to either 0 or 1 on A

(n0)
[x] (see (3.2.9)),

therefore f(x) will be constant on all A(n)
[x] , n > n0 and having Lemma (3.2.1) it

is easy to see that (II.) holds.
It is easy to see that Ei and Ej are mutually exclusive for all natural num-

bers i ̸= j, i.e.
Ei ∩ Ej = ∅, for all natural numbers i ̸= j (3.2.10)

Having (3.2.10) and definition of f(x) (3.2.9) we get:

µ (supp(f)) =
∞∑
s=s0

µ
(
∆̃k2s+1 [x0]

)
(3.2.11)

For every s we have (see (3.2.6) (3.2.7)):

µ
(
∆̃k2s+1 [x0]

)
= µ (∆k2s [x0])− µ

(
∆k2s+1 [x0]

)
≤ µ (∆k2s [x0])−

1

λ
µ
(
∆̃k2s+1 [x0]

)

µ
(
∆̃k2s+1 [x0]

)
≤ λ

λ+ 1
µ (∆k2s [x0]) ≤ . . .

· · · ≤
(

λ

λ+ 1

)2s

µ (∆k1 [x0]) <

(
λ

λ+ 1

)2s

(3.2.12)

From (3.2.11), (3.2.12) and (3.2.8) we get

µ (supp(f)) <
∞∑
s=s0

(
λ

λ+ 1

)2s

=

(
λ
λ+1

)2s0
1−

(
λ
λ+1

)2 < (λ+ 1)

(
λ

λ+ 1

)2s0

< ε (3.2.13)

This concludes the proof of (III.).
Let ps = k2s and qs = k2s−1, s ∈ N, having (3.2.4), (3.2.6), (3.2.7), (3.2.9) and

Lemma (3.2.1) we can show that:
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|Sps(f, x0)− Sqs(f, x0)| =

∣∣∣∣∣∣∣∣∣
1

µ
(
A

(k2s)
[x0]

) ∫
A

(k2s)

[x0]

f(t)dt− 1

µ
(
A

(k2s−1)
[x0]

) ∫
A

(k2s−1)

[x0]

f(t)dt

∣∣∣∣∣∣∣∣∣ =

=

∣∣∣∣∣∣∣
1

µ (∆k2s [x0])

∫
∆k2s

[x0]

f(t)dt− 1

µ
(
∆k2s−1 [x0]

) ∫
∆k2s−1

[x0]

f(t)dt

∣∣∣∣∣∣∣ =
=

µ
(
∆̃k2s [x0]

)
µ (∆k2s [x0])µ

(
∆k2s−1 [x0]

) ∫
∆k2s

[x0]

f(t)dt ≥

≥
µ
(
∆̃k2s [x0]

)
(
µ
(
∆k2s+1 [x0]

)
+ µ

(
∆̃k2s+1 [x0]

))(
µ (∆k2s [x0]) + µ

(
∆̃k2s [x0]

)) ∫
∆̃k2s+1

[x0]

f(t)dt =

=
µ
(
∆̃k2s+1 [x0]

)
µ
(
∆̃k2s [x0]

)
(
µ
(
∆k2s+1 [x0]

)
+ µ

(
∆̃k2s+1 [x0]

))(
µ (∆k2s [x0]) + µ

(
∆̃k2s [x0]

)) =

=
1(

µ(∆k2s+1
[x0])

µ(∆̃k2s+1
[x0])

+ 1

)(
µ(∆k2s

[x0])
µ(∆̃k2s

[x0])
+ 1

) ≥ 1

(λ+ 1)2

Thus (IV.) is proved.

3.3 Proof of the theorem

Proof. Let E = {x1, x2, .., xk, ..} and ε > 0, successively applying Lemma (3.2.2)
for each point xk ∈ E, we get that the following conditions are satisfied:

0 ≤ fk(x) ≤ 1 for all x ∈ [0, 1], and k ∈ N (3.3.1)

for all k ∈ N and x ∈ [0, 1]\{xk}, there exists a natural number nk = nk(xk, x) such
that

Sn(fk;x) = Sn0(fk;x), for all n > nk, n ∈ N (3.3.2)

µ (supp(fk)) <
ε

2k
, for all k ∈ N (3.3.3)

For all k ∈ N there exist natural numbers N (k)
s ↗ ∞ and M

(k)
s ↗ ∞, N

(k)
s >

M
(k)
s , N (k)

s = N
(k)
s (xk), M (k)

s =M
(k)
s (xk) such that∣∣∣S

N
(k)
s
(fk;xk)− S

M
(k)
s
(fk;xk)

∣∣∣ ≥ 1

(λ+ 1)2
, for all s ∈ N. (3.3.4)
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Having (3.3.1) we get that the series
∞∑
k=1

(λ+ 1)−5kfk(x) (3.3.5)

is uniformly convergent on [0, 1]. We will take f(x) as the limit of (3.3.5), i.e.:

f(x) =
∞∑
k=1

(λ+ 1)−5kfk(x) (3.3.6)

It is obvious that 0 ≤ f(x) ≤ 1.
For each fixed n and x the series

∞∑
k=1

(λ+ 1)−5kfk(t)Kn(t, x) (3.3.7)

uniformly converges to f(t)Kn(t, x) on [0, 1], since the series (3.3.5) is uniformly
converges to f(x). From this and (3.1.6) follows that:

Sn(f ;x) =

1∫
0

f(t)Kn(t, x) =

1∫
0

∞∑
k=1

(λ+ 1)−5kfk(t)Kn(t, x) =

=
∞∑
k=1

1∫
0

(λ+ 1)−5kfk(t)Kn(t, x) =
∞∑
k=1

(λ+ 1)−5kSn(fk;x) (3.3.8)

First let us prove that µ (supp(f)) < ε. From (3.3.6) we have that

supp(f) =
∞⋃
k=1

supp(fk)

according to (3.3.3) we have:

µ (supp(f)) ≤
∞∑
k=1

µ (supp(fk)) <
∞∑
k=1

ε

2k
= ε

Now let us show that Sn(f ;x) is convergent on [0, 1]\E.
Let x ∈ [0, 1]\E.

For any δ > 0, we take ν(δ) so that
∞∑

k=ν+1

(λ+ 1)−4k < δ. (3.3.9)

Let N0 := max{n1(x1, x), n2(x2, x), . . . , nν(xν , x)}.
From this and (3.3.2), for all n > N0 we get:

Sn(fk, x) = SN0(fk, x), k = 1, 2, . . . , ν.
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Therefore for all N,M > N0 we get

SN(fk;x)− SM(fk;x) = 0, ∀k ∈ [1, ν]. (3.3.10)

By (3.2.1) and (3.3.1) it follows that

0 ≤ Sn(fk;x) ≤ 1, for all n, k ∈ N. (3.3.11)

From (3.3.8), (3.3.9), (3.3.10), (3.3.11) for all N,M > N0 we obtain

|SN(f ;x)− SM(f ;x)| =

∣∣∣∣∣
∞∑
k=1

(λ+ 1)−4k (SN(fk;x)− SM(fk;x))

∣∣∣∣∣ ≤
≤

∣∣∣∣∣
ν∑
k=1

(λ+ 1)−4k (SN(fk;x)− SM(fk;x))

∣∣∣∣∣+
+

∞∑
k=ν+1

(λ+ 1)−4k |SN(fk;x)− SM(fk;x)| ≤

≤
∞∑

k=ν+1

(λ+ 1)−4k < δ.

Now let us prove that Sn(f ;x) is divergent on E = {x1, x2, . . . , xk, . . . }.
Let x ∈ E, then x = xk0 for some natural number k0.

We take a natural number j0 so that (see (3.3.2), (3.3.4))

N
(k0)
j0

, M
(k0)
j0

>max{n1(x1, xk0), n2(x2, xk0), . . . , nk0−1(xk0−1, xk0)},

Let N0 = min{N (k0)
j0

, M
(k0)
j0

}.
From this and (3.3.2), follows that

Sn(fk, xk0) = SN0(fk, xk0), k = 1, 2, . . . , k0 − 1, ∀n > N0.

Therefore for all j > j0 we have

S
N

(k0)
j

(fk;xk0)− S
M

(k0)
j

(fk;xk0) = 0, ∀k ∈ [1, k0).

From this and (3.3.4), (3.3.8), (3.3.11) follows that for all natural numbers
j > j0: ∣∣∣S

N
(k0)
j

(f ;xk0)− S
M

(k0)
j

(f ;xk0)
∣∣∣ =

=

∣∣∣∣∣
∞∑
k=1

(λ+ 1)−4k
(
S
N

(k0)
j

(fk;xk0)− S
M

(k0)
j

(fk;xk0)
)∣∣∣∣∣ ≥

32



≥ (λ+ 1)−4k0
∣∣∣S

N
(k0)
j

(fk0 ;xk0)− S
M

(k0)
j

(fk0 ;xk0)
∣∣∣−

−
∞∑

k=k0+1

(λ+ 1)−4k
∣∣∣S

N
(k0)
j

(fk;xk0)− S
M

(k0)
j

(fk;xk0)
∣∣∣−

−
k0−1∑
k=1

(λ+ 1)−4k
∣∣∣S

N
(k0)
j

(fk;xk0)− S
M

(k0)
j

(fk;xk0)
∣∣∣ ≥

≥ (λ+ 1)−4k0
1

(λ+ 1)2
−

∞∑
k=k0+1

(λ+ 1)−4k =

=
1

(λ+ 1)4k0+2
− (λ+ 1)−4(k0+1)

1− (λ+ 1)−4
=

=
1

(λ+ 1)4k0+2
− 1

(λ+ 1)4k0((λ+ 1)4 − 1)
>

>
1

(λ+ 1)4k0+2
− 1

(λ+ 1)4k0+3
=

λ

(λ+ 1)4k0+3
.
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