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On local training methods∗

Տեղայնական ուսուցման մեթոդների մասին

Abstract

We study a class of distributed optimization algorithms that aim to allevi-
ate high communication costs by allowing clients to perform multiple local
gradient-type training steps prior to communication. While methods of this
type have been studied for about a decade, the empirically observed accel-
eration properties of local training eluded all attempts at theoretical under-
standing. In a recent breakthrough, Mishchenko et al. (2022) proved that
local training, when properly executed, leads to provable communication
acceleration, which holds in the strongly convex regime without relying on
any data similarity assumptions. However, their method ProxSkip requires
all clients to take the same number of local training steps in each communi-
cation round. Inspired by a common sense intuition, we start our investiga-
tion by conjecturing that clients with “less important” data should be able
to get away with fewer local training steps without impacting the overall
communication complexity of the method. It turns out that this intuition is
correct: we managed to redesign the original ProxSkip method to achieve
this. In particular, we prove that our modified method, for which we coin
the name GradSkip, converges linearly under the same assumptions and has
the same accelerated communication complexity, while the number of local
gradient steps can be reduced relative to a local condition number. We fur-
ther generalize our method by extending the randomness of probabilistic
alternations to arbitrary unbiased compression operators and considering
a generic proximable regularizer. This generalization, which we call Grad-
Skip+, recovers several related methods in the literature as special cases.
Finally, we present an empirical study on carefully designed toy problems
that confirm our theoretical claims.

∗This thesis is based on Maranjyan et al. (2022).
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1 Introduction

Federated Learning (FL) is an emerging distributed machine
learning paradigm where diverse data holders or clients (e.g., smart
watches, mobile devices, laptops, hospitals) collectively aim to train
a single machine learning model without revealing local data to
each other or the orchestrating central server (McMahan et al.,
2017; Kairouz et al, 2019; Wang, 2021). Training such models
amounts to solving federated optimization problems of the form

min
x∈Rd

{
f(x) :=

1

n

n∑
i=1

fi(x)

}
, (1)

where d is the (typically large) number of parameters of the model
x ∈ Rd we aim to train, n is the (potentially large) total number of
devices in the federated environment. We denote by fi(x) the loss or
risk associated with the data Di stored on client i ∈ [n] := {1, 2, . . . , n}.
Formally, our goal is to minimize the overall loss/risk denoted by
f(x).

Due to their efficiency, gradient-type methods with its numer-
ous extensions (Duchi et al., 2011; Zeiler, 2012; Ghadimi and Lan,
2013; Kingma and Ba, 2015; Schmidt et al., 2017; Qian et al., 2019;
Gorbunov et al., 2020a) is by far the most dominant method for
solving (1) in practice.

The simplest implementation of gradient descent for federated
setup requires all workers i ∈ [n] in each time step t ≥ 0 to (i) com-
pute local gradient ∇fi(xt) at the current model xt, (ii) update the
current global model xt using locally computed gradient ∇fi(xt) via
(2) with some step size γ > 0, (iii) average the updated local models
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x̂i,t+1 via (3) to get the new global model xt+1.

x̂i,t+1 = xt − γ∇fi(xt), (2)

xt+1 =
1

n

n∑
i=1

x̂i,t+1. (3)

Distinguishing challenges that characterize FL as a separate dis-
tributed training setup and dictate adjustments to the training algo-
rithm include high communication costs, heterogeneous data dis-

tribution and system heterogeneity across clients. Next, we briefly
discuss these challenges and possible algorithmic workarounds.

1.1 Communication costs

It has been repeatedly observed and advocated that in feder-
ated optimization, communication costs dominate and can be a pri-
mary bottleneck because of slow and unreliable wireless links be-
tween clients and the central server (McMahan et al., 2017). The
communication step (3) between clients cannot be taken out en-
tirely as otherwise, all clients would keep training on local data only,
resulting in a poor model due to limited local data.

A simple trick to reduce communication costs is to perform
the costly synchronization step (3) infrequently, allowing multiple
local gradient steps (2) in each communication round (Mangasar-
ian, 1995). This trick appears in the celebrated FedAvg algorithm of
McMahan et al. (2016; 2017) and its further variations (Haddadpour
and Mahdavi, 2019; Li et al., 2019a; Khaled et al., 2019a;b; Karim-
ireddy et al., 2020; Horváth et al., 2022) under the name of local
gradient methods. However, until very recently, theoretical guar-
antees on the convergence rates of local gradient methods were
worse than the rate of classical gradient descent, which synchro-
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nizes after every gradient step.
In a recent line of works (Mishchenko et al., 2022; Malinovsky

et al., 2022; Condat and Richtárik, 2022; Sadiev et al., 2022), ini-
tiated by Mishchenko et al. (2022), a novel local gradient method,
called ProxSkip, was proposed which performs a random number

of local gradient steps before each communication (alternation be-
tween local training and synchronization is probabilistic) and guar-
antees strong communication acceleration properties. First, they
reformulate the problem (1) into an equivalent regularized consen-
sus problem of the form

min
x1,...,xn∈Rd

{
1
n

n∑
i=1

fi(xi) + ψ(x1, . . . , xn)

}
, (4)

ψ(x1, . . . , xn) :=

 0, if x1 = · · · = xn

+∞, otherwise
, (5)

where communication between the clients and averaging local mod-
els x1, . . . , xn is encoded as taking the proximal step with respect to
ψ, i.e., proxψ([x1 . . . xn]⊤) = [x̄ . . . x̄]⊤, where x̄ := 1

n

∑n
i=1 xi. With this re-

formulation, ProxSkip method of Mishchenko et al. (2022) performs
the proximal (equivalently averaging) step with small probability
p = 1/

√
κ, where κ is the condition number of the problem. Then

the key result of the method for smooth and strongly convex setup
is O(κ log 1/ϵ) iteration complexity with O (

√
κ log 1/ϵ) communication

rounds to achieve ϵ > 0 accuracy. Follow-up works extend the
method to variance reduced gradient methods (Malinovsky et al.,
2022), randomized application of proximal operator (Condat and
Richtárik, 2022), and accelerated primal-dual algorithms (Sadiev
et al., 2022). Our work was inspired by development of this new
generation of local gradient methods, which we detail shortly.

An orthogonal approach utilizes communication compression
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strategies on the information that is transferred. Informally, instead
of communicating full precision models infrequently we might com-
municate compressed version of the local model in each iteration
via an application of lossy compression operators. Such strategies
include sparsification (Alistarh et al., 2018; Mishchenko et al., 2020;
Wang et al., 2018), quantization (Alistarh et al., 2017; Sun et al.,
2019; Wang et al., 2022), sketching (Hanzely et al., 2018; Safaryan
et al., 2021) and low-rank approximation (Vogels et al., 2019).

Our work contributes to the first approach to handling high com-
munication costs that is less understood in theory and, at the same
time, immensely popular in the practice of FL.

1.2 Statistical heterogeneity

Because of the decentralized nature of the training data, dis-
tributions of local datasets can vary from client to client. This het-
erogeneity in data distributions poses an additional challenge since
allowing multiple local steps would make the local models deviate
from each other, an issue widely known as client drift. On the other
hand, if training datasets are identical across the clients (commonly
referred to as homogeneous setup), then the mentioned drifting is-
sue disappears and the training can be done without any commu-
nication whatsoever. Now, if we interpolate between these two ex-
tremes, then under some data similarity conditions (which typically
expressed as gradient similarity conditions) multiple local gradient
steps should be useful. In fact, initial theoretical guarantees of local
gradient methods utilize such assumptions (Haddadpour and Mah-
davi, 2019; Yu et al., 2019; Li et al., 2019b; 2020).

In the fully heterogeneous setup, client drift reduction tech-
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niques were designed and analyzed to mitigate the adverse effect
of local model deviations (Karimireddy et al., 2020; Gorbunov et al.,
2021). A very close analogy is variance reduction techniques called
error feedback mechanisms for the compression noise added to
lessen the number of bits required to transfer (Condat et al., 2022).

1.3 System heterogeneity

Lastly, system heterogeneity refers to the diversity of clients in
terms of their computation capabilities or the amount of resources
they are willing to use during the training. In a typical FL setup, all
participating clients must perform the same amount of local gradi-
ent steps before each communication. Consequently, a highly het-
erogeneous cluster of devices results in significant and unexpected
delays due to slow clients or stragglers.

One approach addressing system heterogeneity or dealing with
slow clients is client selection strategies (Luo et al., 2021; Rei-
sizadeh et al., 2020; Wang and Joshi, 2019). Basically, client sam-
pling can be organized in such a way that slow clients do not delay
the global synchronization and clients with similar computational
capabilities are sampled in each communication round.

In contrast to the above strategy, we propose that clients per-
form as few or as many local steps as their local resources allow.
In other words, we consider the full participation setup where each
client decides how much local computation to perform before com-
munication. Informally, slow clients do less local work than fast
clients, and during the synchronization of local trained models, the
slowdown caused by the stragglers will be minimized.
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2 Contributions

We now briefly summarize key contributions of our work.

2.1 GradSkip: efficient gradient skipping algorithm

We design a new local gradient-type method for distributed op-
timization with communication and computation constraints. The
proposed GradSkip method (see Algorithm 1) is an extension of re-
cently developed ProxSkip method (Mishchenko et al., 2022), which
was the first method showing communication acceleration property
of performing multiple local steps without any data similarity as-
sumptions. Our GradSkip method inherits the same accelerated
communication complexity from ProxSkip, while further improving
computational complexity allowing clients to terminate their local
gradient computations independently from each other.

The key technical novelty of the proposed algorithm is the con-
struction of auxiliary shifts ĥi,t to handle gradient skipping for each
client i ∈ [n]. GradSkip also maintains shifts hi,t initially introduced
in ProxSkip to handle communication skipping across the clients.
We prove that GradSkip converges linearly in strongly convex and
smooth setup, has the same O(

√
κmax log 1/ϵ) accelerated communi-

cation complexity as ProxSkip, and requires clients to compute (in
expectation) at most min(κi,

√
κmax) local gradients in each commu-

nication round (see Theorem 3.6), where κi is the condition number
for client i ∈ [n] and κmax = maxi κi. Thus, for GradSkip, clients with
well-conditioned problems κi <

√
κmax perform much less local work

to achieve the same convergence rate of ProxSkip, which assumes
√
κmax local steps on average for all clients.

11



2.2 GradSkip+: general GradSkip method

Next, we generalize the construction and the analysis of Grad-
Skip by extending it in two directions: handling optimization prob-
lems with arbitrary proximable regularizer and incorporating gen-
eral randomization procedures using unbiased compression opera-
tors with custom variance bounds. With such enhancements, we
propose our second method, GradSkip+ (see Algorithm 2), which
recovers several methods in the literature as a special case, in-
cluding the standard proximal gradient descent (ProxGD), ProxSkip
(Mishchenko et al., 2022), RandProx-FB (Condat and Richtárik, 2022)
and GradSkip.

2.3 VR-GradSkip+: variance reduced GradSkip+

Finally, we generalize GradSkip+ by combining it with recently
developed ProxSkip-VR method (Malinovsky et al., 2022). ProxSkip-
VR reduces computational complexity by allowing computationally
cheaper stochastic gradient estimators instead of full batch gradi-
ents. This approach of reducing computational complexity is blind
to statistical heterogeneity and is entirely orthogonal to our ap-
proach of reducing computational complexity in GradSkip. So the
generalization is quite natural and we propose our most general
method, VR-GradSkip+ (see Algorithm 3), which is both a general-
ization of GradSkip+ and ProxSkip-VR.
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3 GradSkip

In this section, we present our first algorithm, GradSkip, and dis-
cuss its benefits in detail. Later we will generalize it, unifying sev-
eral other methods as special cases. Recall that our target is to
address three challenges in FL mentioned in the introductory part,
which are (i) reduction in communication cost via infrequent syn-
chronization of local models, (ii) statistical or data heterogeneity,
and (iii) reduction in computational cost via limiting local gradient
calls based on the local subproblem. We now describe all the steps
of the algorithm and how it handles these three challenges.

3.1 Algorithm structure

For the sake of presentation, we describe the progress of the
algorithm using two variables xi,t, x̂i,t for the local models and two
variables hi,t, ĥi,t for the local gradient shifts. Essentially, we want
to maintain two variables for the local models since clients get syn-
chronized infrequently. The shifts hi,t are designed to reduce the
client drift caused by the statistical heterogeneity. Finally, we intro-
duce an auxiliary shifts ĥi,t to take care of the different number of
local steps. The GradSkip method is formally presented in Algorithm
1.

As an initialization step, we choose probability p > 0 to control
communication rounds, probabilities qi > 0 for each client i ∈ [n]

to control local gradient steps and initial control variates (or shifts)
hi,0 ∈ Rd to control the client drift. Besides, we fix the stepsize γ > 0

and assume that all clients commence with the same local model,
namely x1,0 = · · · = xn,0 ∈ Rd. Then, each iteration of the method
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Algorithm 1 GradSkip
1: Input: stepsize γ > 0, synchronization probability p, probabilities qi > 0

controlling local steps, initial local iterates x1,0 = · · · = xn,0 ∈ Rd, initial shifts
h1,0, . . . , hn,0 ∈ Rd, total number of iterations T ≥ 1

2: for t = 0, 1, . . . , T − 1 do
3: server: Flip a coin θt ∈ {0, 1} with Prob(θt = 1) = p ⋄ Decide when to skip

communication
4: for all devices i ∈ [n] in parallel do
5: Flip a coin ηi,t ∈ {0, 1} with Prob(ηi,t = 1) = qi ⋄ Decide when to skip

gradient steps (see Lemma 3.1)
6: ĥi,t+1 = ηi,thi,t + (1− ηi,t)∇fi(xi,t) ⋄ Update the local auxiliary shifts ĥi,t
7: x̂i,t+1 = xi,t − γ(∇fi(xi,t)− ĥi,t+1) ⋄ Update the local auxiliary iterate x̂i,t

via shifted gradient step
8: if θt = 1 then
9: xi,t+1 =

1
n

n∑
j=1

(
x̂j,t+1 − γ

p
ĥj,t+1

)
⋄ Average shifted iterates, but only very

rarely!
10: else
11: xi,t+1 = x̂i,t+1 ⋄ Skip communication!
12: end if
13: hi,t+1 = ĥi,t+1 +

p

γ
(xi,t+1 − x̂i,t+1) ⋄ Update the local shifts hi,t

14: end for
15: end for

comprises two stages, the local stage and the communication stage,
operating probabilistically. Specifically, the probabilistic nature of
these stages is the following. The local stage requires computa-
tion only with some predefined probability; otherwise, the stage is
void. Similarly, the communication stage requires synchronization
between all clients only with probability p; otherwise, the stage is
void.

In the local stage (lines 5–7), all clients i ∈ [n] in parallel up-
date their local variables (x̂i,t+1, ĥi,t+1) using values (xi,t, hi,t) from pre-

14



vious iterate either by computing the local gradient ∇fi(xi,t) or by
just copying the previous values. Afterwards, in the communication
stage (lines 8–13), all clients in parallel update their local variables
(xi,t+1, hi,t+1) from (x̂i,t+1, ĥi,t+1) by either averaging across the clients
or copying previous values.

3.2 Reduced local computation

Clearly, communication costs are reduced as the averaging step
occurs only when θt = 1 with probability p of our choice. However,
it is not directly apparent how the computational costs are reduced
during the local stage. Indeed, both options ηi,t = 1 and ηi,t = 0

involve the expression ∇fi(xi,t) as if local gradients need to be eval-
uated in every iteration. As we show in the following lemma, this is
not the case.

Lemma 3.1 (Fake local steps). Suppose that Algorithm 1 does not

communicate for τ ≥ 1 consecutive iterates, i.e., θt = θt+1 = · · · =

θt+τ−1 = 0 for some fixed t ≥ 0. Besides, let for some client i ∈ [n] we

have ηi,t = 0. Then, regardless of the coin tosses {ηi,t+j}τj=1, client i

does fake local steps without any gradient computation in τ iterates.

Formally, for all j = 1, 2, . . . , τ + 1, we have

x̂i,t+j = xi,t+j = xi,t, (6)

ĥi,t+j = hi,t+j = hi,t = ∇fi(xi,t). (7)

Let us reformulate the above lemma. During the local stage
of GradSkip, when clients do not communicate with server, ith client
terminates its local gradient steps once the local coin toss ηi,t =

0. Thus, smaller probability qi implies sooner coin toss ηi,t = 0 in
expectation, hence, less amount of local computation for client i.
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Therefore, we can relax computational requirements of clients by
adjusting these probabilities qi and controlling the amount of local
gradient computations.

Next, let us find out how the expected number of local gradient
steps depends on probabilities p and qi. Let Θ and Hi be random
variables representing the number of coin tosses (Bernoulli trials)
until the first occurrence of θt = 1 and ηi,t = 0 respectively. Equiv-
alently, Θ ∼ Geo(p) is a geometric random variable with parame-
ter p, and Hi ∼ Geo(1 − qi) are geometric random variables with
parameter 1 − qi for i ∈ [n]. Notice that, within one communication
round, ith client performs min(Θ, Hi) number of local gradient compu-
tations, which is again a geometric random variable with parameter
1− (1− (1− qi))(1− p) = 1− qi(1− p). Therefore, the expected number
of local gradient steps is E [min(Θ, Hi)] = 1/(1−qi(1−p)). Let us formulate
this observation as a separate lemma.

Lemma 3.2 (Expected number of local steps). The expected num-

ber of local gradient computations in each communication round of

GradSkip is 1
(1−qi(1−p)) for all clients i ∈ [n].

Notice that, in the special case of qi = 1 for all i ∈ [n], GradSkip
recovers Scaffnew method of Mishchenko et al. (2022). Hovewer, as
we will show, we can choose probabilities qi smaller, reducing com-
putational complexity and obtaining the same convergence rate as
Scaffnew.
Remark 3.3 (System Heterogeneity). From this discussion we con-
clude that GradSkip can also address system or device heterogene-
ity. In particular, probabilities {qi}ni=1 can be assigned to clients in
accordance with their local computational resources; slow clients
with scarce compute power should get small qi, while faster clients
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with rich resources should get bigger qi ≤ 1.

3.3 Convergence theory

Now that we explained the structure and computational bene-
fits of the algorithm, let us proceed to the theoretical guarantees.
We consider the same strongly convex and smooth setup as consid-
ered by Mishchenko et al. (2022) for the distributed case.

Assumption 3.4. All functions fi(x) are strongly convexwith param-
eter µ > 0 and have Lipschitz continuous gradients with Lipschitz
constants Li > 0, i.e., for all i ∈ [n] and any x, y ∈ Rd we have

µ

2
∥x− y∥2 ≤ Dfi(x, y) ≤

Li
2
∥x− y∥2, (8)

whereDfi(x, y) := fi(x)−fi(y)−⟨∇fi(y), x−y⟩ is the Bregman divergence
associated with fi at points x, y ∈ Rd.

We present Lyapunov-type analysis to prove the convergence,
which is a very common approach for iterative algorithms. Consider
the Lyapunov function

Ψt :=
n∑
i=1

∥xi,t − x⋆∥2 +
γ2

p2

n∑
i=1

∥hi,t − hi,⋆∥2, (9)

where γ > 0 is the stepsize, x⋆ is the (necessary) unique minimizer
of f(x) and hi,∗ = ∇fi(x∗) is the optimal gradient shift. As we show
next, Ψt decreases at a linear rate.

Theorem 3.5. Let Assumption 3.4 hold. If the stepsize satisfies

γ ≤ min
i

{
1
Li

p2

1−qi(1−p2)

}
and probabilities are chosen so that 0 < p, qi ≤ 1,

then the iterates of GradSkip (Algorithm 1) satisfy

E [Ψt] ≤ (1− ρ)tΨ0, (10)

for all t ≥ 1 with ρ := min
{
γµ, 1− qmax(1− p2)

}
> 0.
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Let us comment on this result.
• The first and immediate observation from the above result is

that, with a proper stepsize choice, GradSkip converges linearly for
any choice of probabilities p and qi from (0, 1].

• Furthermore, by choosing all probabilities qi = 1 we get the
same rate of Scaffnew with ρ = min{γµ, p2} (see Theorem 3.6 in
(Mishchenko et al., 2022)). If we further choose the largest admis-
sible stepsize γ = 1/Lmax and the optimal synchronization probability
p = 1/√κmax, we get O(κmax log 1/ϵ) iteration complexity, O(

√
κmax log 1/ϵ)

accelerated communication complexity with 1/p =
√
κmax expected

number of local steps in each communication round. Here, we used
notation κmax = maxi κi where κi = Li/µ is the condition number for
client i ∈ [n].

• Finally, exploiting smaller probabilities qi, we can optimize
computational complexity subject to the same communication com-
plexity as Scaffnew. To do that, note that the largest possible step-
size that Theorem 3.5 allows is γ = 1/Lmax as mini

{
1
Li

p2

1−qi(1−p2)

}
≤

mini
1
Li

≤ 1
Lmax

. Hence, taking into account ρ ≤ γµ, the best iteration
complexity from the rate (10) is O(κmax log 1/ϵ), which can be obtained
by choosing the probabilities appropriately as formalized in the fol-
lowing result.

Theorem 3.6 (Optimal parameter choices). Let Assumption 3.4

hold and choose probabilities qi =
1− 1

κi

1− 1
κmax

≤ 1 and p = 1√
κmax

. Then,

with the largest admissible stepsize γ = 1
Lmax

, GradSkip enjoys the

following properties:

(i) O
(
κmax log

1
ε

)
iteration complexity,

(ii) O
(√

κmax log
1
ε

)
communication complexity,
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(iii) for each client i ∈ [n], the expected number of local gradient

computations per communication round is

1

1− qi(1− p)
=
κi(1 +

√
κmax)

κi +
√
κmax

≤ min(κi,
√
κmax). (11)

This result clearly quantifies the benefits of using smaller proba-
bilities qi. In particular, if the condition number κi of client i is smaller
than √

κmax, then within each communication round it does only κi

number of local gradient steps. However, for a client having the
maximal condition number (namely, clients argmaxi{κi}), the num-
ber of local gradient steps is √

κmax, which is the same for Scaffnew.
From this we conclude that, in terms of computational complexity,
GradSkip is always better and can be O(n) times better than Scaffnew
(Mishchenko et al., 2022).
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4 GradSkip+

Here we aim to present a deeper understanding for GradSkip by
extending it in two directions and designed our generic GradSkip+
method.

The first direction is the formulation of the optimization problem.
As we discussed earlier, distributed optimization (1) with consensus
constraints can be transformed into regularized optimization prob-
lem (4) in the lifted space. Thus, following Mishchenko et al. (2022),
we consider the (lifted) problem1

min
x∈Rd

f(x) + ψ(x), (12)

where f(x) is strongly convex and smooth loss, while ψ(x) is closed,
proper and convex regularizer (e.g., see (5)). The requirement we
impose on the regularizer is that the proximal operator of ψ is a
single-valued function that can be computed.

The second extension in GradSkip+ is the generalization of the
randomization procedure of probabilistic alternations in GradSkip
by allowing arbitrary unbiased compression operators with certain
bounds on the variance. Let us formally define the class of com-
pressors we will be working with.

Definition 4.1 (Unbiased Compressors). For any positive semidefi-
nitematrixΩ ⪰ 0, denote by Bd(Ω) the class of (possibly randomized)
unbiased compression operators C : Rd → Rd such that for all x ∈ Rd

we have

E [C(x)] = x, E
[
∥(I+Ω)−1C(x)∥2

]
≤ ∥x∥2(I+Ω)−1.

1To be precise, the lifted problem is in Rnd as we stack all local variables x1, . . . , xn ∈ Rd into
one.
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The class Bd(Ω) is a generalization of commonly used class
Bd(ω) of unbiased compressors with variance bound E

[
∥C(x)∥2

]
≤

(1 + ω)∥x∥2 for some scalar ω ≥ 0. Indeed, when the matrix Ω = ωI,
then Bd(ωI) coincides with Bd(ω). Furthermore, the following inclu-
sion holds:

Lemma 4.2. Bd(Ω) ⊆ Bd((1+λmax(Ω))2/(1+λmin(Ω)) − 1).

The purpose of this new variance bound with matrix parame-
ter Ω is to introduce non-uniformity on the level of compression
across different directions. For example, in the reformulation (4)
each client controls 1/n portion of the directions and the level of com-
pression. For example, consider compression operator C : Rd → Rd

defined as

C(x)j =


xj
pj

with probability pj,
0 with probability 1− pj,

(13)

for all coordinates j ∈ [d] and for any x ∈ Rd, where pj ∈ (0, 1] are
given probabilities. Then, it is easy to check that C ∈ Bd(Ω) with
diagonal matrix Ω = Diag(1/pj − 1) having diagonal entries 1/pj − 1 ≥ 0.

Now that we have finer control over the compression operator,
we can make use of the granular smoothness information of the
loss function f through the so-called smoothness matrices (Qu and
Richtárik, 2016a;b).

Definition 4.3 (Matrix Smoothness). A differentiable function f :

Rd → R is called L-smooth with some symmetric and positive defi-
nite matrix L ≻ 0 if

Df(x, y) ≤ 1
2∥x− y∥2L, ∀x, y ∈ Rd. (14)

The standard L-smoothness condition in (8) with scalar L > 0 is
obtained as a special case of (14) for matrices of the form L = LI,
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where I is the identity matrix. The notion of matrix smoothness pro-
vides much more information about the function than mere scalar
smoothness. In particular, if f is L-smooth, then it is also λmax(L)-
smooth due to the relation L ⪯ λmax(L)I. Smoothness matrices
have been used in the literature of randomized coordinate descent
(Richtárik and Takáč, 2016; Hanzely and Richtárik, 2019a;b) and dis-
tributed optimization (Safaryan et al., 2021; Wang et al., 2022).

4.1 Algorithm description

Similar to GradSkip, we maintain two variables xt, x̂t for the
model, and two variables ht, ĥt for the gradient shifts in GradSkip+.
Initial values x0 ∈ Rd and h0 ∈ Rd can be chosen arbitrarily. In each
iteration, GradSkip+ first updates the auxiliary shift ĥt+1 using the
previous shift ht and gradient ∇f(xt) (line 4). This shift ĥt+1 is then
used to update the auxiliary iterate xt via shifted gradient step (line
5). Then we estimate the proximal gradient ĝt (line 6) in order to
update the main iterate xt+1 (line 7). Lastly, we complete the itera-
tion by updating the main shift ht (line 8). See Algorithm 2 for the
formal steps.

4.2 Special Cases

Before we proceed to the theoretical results, let us consider a
few special cases of GradSkip+.

Case 1 (ProxGD). If Cω is the identity compressor (i.e., ω =

0), then Algorithm 2 reduces to the ProxGD algorithm as xt+1 =

proxγψ(x̂t+1 − γĥt+1) = proxγψ(xt − γ∇f(xt)) for any choice of CΩ.
Case 2 (ProxSkip). Let CΩ be the identity compressor (i.e., Ω =

I) and Cω be the Bernoulli compressor Cp with parameter p ∈ (0, 1]
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Algorithm 2 GradSkip+
1: Parameters: stepsize γ > 0, compressors Cω ∈ Bd(ω) and CΩ ∈ Bd(Ω).
2: Input: initial iterate x0 ∈ Rd, initial control variate h0 ∈ Rd, number of itera-

tions T ≥ 1.
3: for t = 0, 1, . . . , T − 1 do
4: ĥt+1 = ∇f(xt)− (I+Ω)−1CΩ (∇f(xt)− ht) ⋄ Update the shift ĥt via shifted

compression
5: x̂t+1 = xt − γ(∇f(xt)− ĥt+1) ⋄ Update the iterate x̂t via shifted gradient

step
6: ĝt =

1
γ(1+ω)

Cω
(
x̂t+1 − proxγ(1+ω)ψ

(
x̂t+1 − γ(1 + ω)ĥt+1

))
⋄ Estimate the

proximal gradient
7: xt+1 = x̂t+1 − γĝt ⋄ Update the main iterate xt
8: ht+1 = ĥt+1 +

1
γ(1+ω)

(xt+1 − x̂t+1) ⋄ Update the main shift ht
9: end for

(note that here ω = 1/p − 1). In this case, ĥt+1 ≡ ht and xt+1 is either
proxγ/pψ (x̂t+1 − γ/pht) (with probability p) or x̂t+1 (with probability 1− p).
Thus, we recover the ProxSkip algorithm.

Case 3 (RandProx-FB). Let CΩ be the identity compressor and
CΩ = R ∈ Bd(ω). Then, after the following change of notation:
ht = −ut, ĝt = dt/1+ω2, the method is equivalent to RandProx-FB (Con-
dat and Richtárik, 2022), which is a generalization of ProxSkip when
additional smoothness information for the regularizer ψ is known2.

Case 4 (GradSkip). Finally, we can specialize GradSkip+ to re-
cover GradSkip. Consider the lifted space Rnd where x ∈ Rnd repre-
sents the concatenations of models x1, . . . , xn ∈ Rd from all client’s.
The central example of an unbiased compression operator for that
would be the probabilistic switching mechanism used in GradSkip,
which is sometimes referred to as Bernoulli compressor: for any

2We do not consider smooth regularizers as our primary example of regularizer is the non-
smooth consensus constraint (5).
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given p ∈ [0, 1], the compressor Cndp (x) outputs x/p (with probability
p) or 0 (with probability 1 − p) for any input vector x ∈ Rnd. Grad-
Skip employs one Bernoulli compressor Cndp with parameter p ∈ (0, 1]

controlling communication rounds, and one Bernoulli compressor
Cdqi with parameter qi ∈ (0, 1] for each client to control local gradient
steps. Therefore, choosing Cω = Cndp and CΩ = Cdq1×· · ·×Cdqn in the lifted
space Rnd, GradSkip+ reduces to GradSkip.

4.3 Convergence theory

We now present the convergence theory for GradSkip+, for
which we replace the scalar smoothness Assumption 3.4 by matrix
smoothness.

Assumption 4.4 (Convexity and smoothness). We assume that the
loss function f is µ-strongly convex with positive µ > 0 and L-smooth
with positive definite matrix L ≻ 0.

Analogous to (9), we analyze GradSkip+ by consider the follow-
ing Lyapunov function.

Ψt := ∥xt − x⋆∥2 + γ2(1 + ω)2∥ht − h⋆∥2,

where h∗ = ∇f(x∗). In the following theorem, we show the general
linear convergence result.

Theorem 4.5. Let Assumption 4.4 hold, Cω ∈ Bd(ω) and CΩ ∈ Bd(Ω)

be the compression operators, and Ω̃ := I+ ω(ω + 2)Ω(I+Ω)−1. Then,

if the stepsize γ ≤ λ−1
max(LΩ̃), the iterates of GradSkip+ (Algorithm 2)

satisfy

E [Ψt] ≤ (1−min {γµ, δ})tΨ0, (15)

where δ = 1− 1
1+λmin(Ω)

(
1− 1

(1+ω)2

)
∈ [0, 1].
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Let us discuss some implications from this rate. If we choose
CΩ to be the identity compression (i.e., Ω = 0), then GradSkip+ re-
duces to RandProx-FB and we recover asymptotically the same rate
with linear factor (1−min{γµ, 1/(1+ω)2}) (see Theorem 3 of Condat and
Richtárik (2022)). If we further choose Cω to be the Bernoulli com-
pression with parameter p ∈ (0, 1], then ω = 1/p − 1 and we get the
rate of ProxSkip.

In order to recover the rate (10) of GradSkip, consider the
lifted space Rnd with reformulation (4)-(5) and objective function
f(x) = 1

n

∑n
i=1 fi(xi), where xi ∈ Rd and x = (x1, . . . , xn) ∈ Rnd. From

µ-strong convexity of each loss function fi, we conclude that f
is also µ-strongly convex. Regarding the smoothness condition,
we have LiI ∈ Rd×d smoothness matrices (equivalent to scalar Li-
smoothness) for each fi, which implies that the overall loss function
f has L = Diag(L1I, . . . , LnI) ∈ Rnd×nd as a smoothness matrix. Fur-
thermore, choosing Bernoulli compression operators Cω = Cndp and
CΩ = Cdq1 × · · · × Cdqn in the lifted space Rnd, we get ω = 1/p − 1 and
Ω = Diag(1/qi − 1). It remains to plug all these expressions into The-
orem 4.5 and recover Theorem 3.6. Indeed, λmin(Ω) = 1/qmax − 1 and,
hence, δ = 1 − qmax(1 − p2). Lastly, Theorem 4.5 recovers the same
stepsize bound as λ−1

max(LΩ̃) = mini (Li (1 + (1− qi) (1/p2 − 1)))−1

= mini

{
1
Li

p2

1−qi(1−p2)

}
.
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5 VR-GradSkip+

Here we present our most general algorithm, VR-GradSkip+.
Recently developed ProxSkip-VR method (Malinovsky et al.,

2022) reduces computational complexity by allowing computation-
ally cheaper stochastic gradient estimators instead of full batch
gradients. This approach of reducing computational complexity is
blind to statistical heterogeneity and is entirely orthogonal to our
approach of reducing computational complexity in GradSkip. It is
natural to ask the following question.

Is it possible to combine these two methods (ProxSkip-VR
and GradSkip) to achieve even better computational com-

plexity?

We give an affirmative answer to the question by developing
our most general VR-GradSkip+ method.

5.1 Algorithm description

We get VR-GradSkip+ from GradSkip+ by replacing the gradient
∇f(xt) by an unbiased estimator gt = StochasticGradient(xt, f), see
Algorithm 3.

Our next assumption, initially introduced by Gorbunov et al.
(2020a), postulates several parametric inequalities characterizing
the behavior and ultimately the quality of a gradient estimator. Sim-
ilar assumptions appeared later in (Gorbunov et al., 2021; 2020b).

Assumption 5.1. Let {xt} be the iterates produced by VR-
GradSkip+. We first assume unbiasedness of the stochastic gradi-
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Algorithm 3 VR-GradSkip+
1: Parameters: stepsize γ > 0, compressors Cω ∈ Bd(ω) and CΩ ∈ Bd(Ω).
2: Input: initial iterate x0 ∈ Rd, initial control variate h0 ∈ Rd, number of itera-

tions T ≥ 1.
3: for t = 0, 1, . . . , T − 1 do
4: gt = StochasticGradient(xt, f) ⋄ Construct an unbiased estimator of

∇f(xt)
5: ĥt+1 = gt − (I+Ω)−1CΩ (gt − ht) ⋄ Update the shift ĥt via shifted

compression
6: x̂t+1 = xt − γ(gt − ĥt+1) ⋄ Update the iterate x̂t via shifted stochastic

gradient step
7: ĝt =

1
γ(1+ω)

Cω
(
x̂t+1 − proxγ(1+ω)ψ

(
x̂t+1 − γ(1 + ω)ĥt+1

))
⋄ Estimate the

proximal gradient
8: xt+1 = x̂t+1 − γĝt ⋄ Update the main iterate xt
9: ht+1 = ĥt+1 +

1
γ(1+ω)

(xt+1 − x̂t+1) ⋄ Update the main shift ht
10: end for

ents gt for all iterations t ≥ 0, i.e.,

E [gt | xt] = ∇f(xt). (16)

Next, we assume that for some non-negative constants
A,B,C, Ã, B̃, C̃, with B̃ < 1, and non-negative sequence {σt}t≥0

the following inequalities hold for all t ≥ 0:

E
[
∥gt −∇f(x⋆)∥2L−1 | xt

]
≤ 2ADf(xt, x⋆) + Bσt + C, (17)

E [σt+1 | xt] ≤ 2ÃDf(xt, x⋆) + B̃σt + C̃. (18)

Assumption 5.1 covers a very large collection of gradient esti-
mators, including an infinite variety of subsampling/minibatch es-
timators, gradient sparsification and quantization estimators, and
their combinations; see (Gorbunov et al., 2020a) for examples. VR
estimators are characterized by C = C̃ = 0; most non-VR estimators
by Ã = B̃ = C̃ = B = 0 and C > 0 (Gower et al., 2019).
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5.2 Special Cases

Case 1 (GradSkip+). Consider the case when stochastic gra-
dients are full batch gradients, i.e., gt = ∇f(xt) for all t ≥ 0. Then
Algorithm 3 reduces to GradSkip+.

Case 2 (ProxSkip-VR). To recover ProxSkip-VR from VR-
GradSkip+, we need the same conditions we had for recovering Prox-
Skip from GradSkip+. That is, let CΩ be the identity compressor (i.e.,
Ω = I) and Cω be the Bernoulli compressor Cp with parameter p ∈ (0, 1]

(note that here ω = 1/p − 1). In this case, ĥt+1 ≡ ht and xt+1 is either
proxγ/pψ (x̂t+1 − γ/pht) (with probability p) or x̂t+1 (with probability 1− p).
Thus, we recover the ProxSkip-VR algorithm.

5.3 Convergence theory

Consider the Lyapunov function:

Ψt := ∥xt − x⋆∥2 + γ2(1 + ω)2∥ht − h⋆∥2 + γ2Wσt,

where h∗ = ∇f(x∗).

Theorem 5.2. Let Assumption 4.4 hold, and let gt be a gradient

estimator satisfying Assumption 5.1. Let Cω ∈ Bd(ω) and CΩ ∈ Bd(Ω)

be the compression operators. If B > 0, choose any W > λmax(LΩ̃)B

1−B̃

and then β = 1 − B̃ − λmax(LΩ̃)B
W > 0. In case of B = 0, set W = 0

and β = B̃. If the stepsize γ ≤ 1

Aλmax(LΩ̃)+WÃ
, then the iterates of VR-

GradSkip+ (Algorithm 3) satisfy

E [Ψt] ≤ (1−min(γµ, δ, β))tΨ0 + γ2
λmax(LΩ̃)C +WC̃

min(γµ, δ, β)
,

where

δ = 1− 1

1 + λmin(Ω)

(
1− 1

(1 + ω)2

)
, Ω̃ = I+ ω(ω + 2)Ω(I+Ω)−1. (19)
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6 Experiments

To test the performance of GradSkip and illustrate theoretical re-
sults, we use classical logistic regression problem. The loss function
for this model has the following form:

f(x) = 1
n

n∑
i=1

1
mi

mi∑
j=1

log
(
1 + exp

(
−bija⊤ijx

))
+ λ

2∥x∥
2,

where n is the number of clients, mi is the number of data points
per worker, aij ∈ Rd and bij ∈ {−1,+1} are the data samples, and λ is
the regularization parameter.

We conduct several experiments on artificially generated data
and on the “australian” dataset from LibSVM library (Chang and Lin,
2011). All algorithms are implemented in Python using the package
RAY (Moritz et al., 2018) to utilize parallelization. We run all algo-
rithms using their theoretically optimal hyper-parameters (stepsize,
probabilities).

6.1 Number of gradient computations: GradSkip vs Prox-
Skip

We compare GradSkip only to ProxSkip since ProxSkip has SOTA
accelerated communication complexity. Although ProxSkip-VR has
better computational complexity. The difference (in terms of com-
putational complexity) between VR-GradSkip+ over ProxSkip-VR and
GradSkip over ProxSkip will be the same.

n∑
i=1

κi(1+
√
κmax)

κi+
√
κmax

≤
n∑
i=1

min
{
κi,

√
κmax

}
,

(see (11)), while for ProxSkip we have n
√
κmax. That is the gradient

computation ratio of ProxSkip over GradSkip depends on the number
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Figure 1: In the first columnwe show the condition numbers for devices. In the second column
we show the convergence per communication rounds. In the third column we show theoretical
and practical difference between number of gradient computations. In the last column we have
the average gradient computations for each device having κi condition number, we see that
for GradSkip the device with κi = κmax does the same number of gradient computations as all
devices in ProxSkip.

of devices having κi ≥
√
κmax condition number. If there are k ≤ n

such devices, then the gradient computation ratio of ProxSkip over
GradSkip converges to n/k ≥ 1 when κmax → ∞.

In our experiments we have only one device with ill-conditioned
local problem (k = 1). And to show this convergence we artificially
generate data for having control over the smoothness constants.
We also set the regularization parameter λ = 10−1 = µ.

In Figure 1, we have n = 20 devices. We set large Li = Lmax for
one device and for the rest we have Li ∼ Uniform(0.1, 1). We can see
that the convergence is the same for GradSkip and ProxSkip. Next,
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Figure 2: The columns have the same meaning as in Figure 1.

we increase Lmax in each row to show that the ratio indeed converges
to n = 20.

In Figure 2 we show that this ratio can be made arbitrarily large
by increasing the number of clients (n). We set large Li = Lmax = 107

for one device and for the rest we again have Li ∼ Uniform(0.1, 1),
and we increase n in each row.

Remarkably, the experimental results follows the same pattern
as our theoretical prediction.
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6.2 Real Dataset

We also do the same experiment using the “australian” dataset
from LibSVM library (Chang and Lin, 2011). We set the regulariza-
tion parameter λ = 10−4Lmax. We split the dataset equally into n = 20

devices. In this case we get k = 8 devices with ill-conditioned local
problems, so the gradient computation ratio of ProxSkip over Grad-
Skip should be close to n/k = 2.5. It can be seen in Figure 3.
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Appendix

A Limitations and Future Work

In this part, we outline some limitations and future research
directions related to our work.

• As the previous works on local gradient methods with communi-
cation acceleration, our theory does not cover general convex
or non-convex objective functions.

• Another key component for designing efficient distributed and
federated learning algorithm is partial device participation.
This extension seems rather tricky, and we leave this as future
work.

• Finally, one can combine the local gradient methods with com-
munication compression to achieve even better communica-
tion complexity. Moreover, our proposed gradient skipping ap-
proach can be decoupled to address computational complexity
too.

B Proofs for Section 3 (GradSkip)

B.1 Proof of Lemma 3.1

Proof. The proof is rather straightforward and follows by following
the corresponding lines of the algorithm. Note that ηi,t = θt = 0

implies (see lines 6 and 7 in Algorithm 1) that

x̂i,t+1 = xi,t+1 = xi,t, (20)

ĥi,t+1 = hi,t+1 = hi,t = ∇fi(xi,t), (21)
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which proves (6)–(7) when j = 1. Consider the two possible cases
for ηi,t+1 coupled with θt+1 = 0. If ηi,t+1 = 1, then

x̂i,t+2 = xi,t+1 − γ(∇fi(xi,t+1)− hi,t+1)

(20)
= xi,t+1 − γ(∇fi(xi,t)− hi,t+1)

(21)
= xi,t+1

(20)
= xi,t,

and
ĥi,t+2 = hi,t+1

(21)
= hi,t = ∇fi(xi,t).

In case of ηi,t+1 = 0, we have

x̂i,t+2 = xi,t+1
(20)
= xi,t

and
ĥi,t+2 = ∇fi(xi,t+1)

(20)
= ∇fi(xi,t)

(20)
= hi,t.

Hence, in both cases we get

x̂i,t+2 = xi,t+1 = xi,t, (22)

ĥi,t+2 = hi,t = ∇fi(xi,t). (23)

It remains to combine (22)–(23) with the condition that θt+1 = 0,
which implies xi,t+2 = x̂i,t+2, hi,t+2 = ĥi,t+2. Thus, we proved (6)–(7)
when j = 2. The proof can be completed by applying induction on
j.

B.2 Proof of Lemma 3.2

Asmentioned in the text preceding the lemma, the proof follows
from the fact that for two geometric random variables Θ ∼ Geo(p)
and H ∼ Geo(q), their minimum min(Θ, H) is also a geometric ran-
dom variable with parameter 1− (1− p)(1− q). To see this, consider
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the corresponding Bernoulli trials with success probability p and q for
each geometric random variable. Notice that the probability that
both trials fail is (1−p)(1−q). Hence, min(Θ, H) is the number of joint
trials of the two Bernoulli variables until on of them succeeds with
probability 1− (1− p)(1− q). Therefore, min(Θ, H) is also a geometric
random variable with success probability 1− (1− p)(1− q).

B.3 Proof of Theorem 3.5

Denote Et [ · ] := E [ · | x1,t, · · · , xn,t] the conditional expectation
with respect to the randomness of all local models x1,t, · · · , xn,t at
tth iterate.

Lemma B.1. If γ > 0 and 0 ≤ p, qi ≤ 1, then

Et [Ψt+1] =
n∑
i=1

[
∥wi,t − wi,⋆∥2 + (1− qi)

(
1− p2

) γ2
p2
∥∇f(xi,t)− hi,⋆∥2

+qi
(
1− p2

) γ2
p2
∥hi,t − hi,⋆∥2

]
,

where the expectation is taken over θt and ηi,t in Algorithm 1.

Proof of Lemma B.1. In order to simplify notation, denote

xi := x̂i,t+1 −
γ

p
ĥi,t+1, yi := x⋆ −

γ

p
hi,⋆. (24)

x̄ :=
1

n

n∑
i=1

xi, ȳ :=
1

n

n∑
i=1

yi = x∗. (25)

STEP 1 (Recalling the steps of the method). Recall that

xi,t+1 =

x̄ with probability p

x̂i,t+1 with probability 1− p

, (26)

and

hi,t+1 =

ĥi,t+1 +
p
γ (x̄− x̂i,t+1) with probability p

ĥi,t+1 with probability 1− p

. (27)
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STEP 2 (One-step expectation w.r.t. the global coin toss
θt).

The expected value of the Lyapunov function

Ψt :=
n∑
i=1

∥xi,t − x⋆∥2 +
γ2

p2

n∑
i=1

∥hi,t − hi,⋆∥2 (28)

at (t+ 1)th iterate with respect to the coin toss θt is

Et [Ψt+1 | η1,t, . . . , ηn,t]
(26)−(28)

= p
n∑
i=1

(
∥x̄− x⋆∥2 +

γ2

p2

∥∥∥∥ĥi,t+1 +
p

γ
(x̄− x̂i,t+1)− hi,⋆

∥∥∥∥2
)

+(1− p)
n∑
i=1

(
∥x̂i,t+1 − x⋆∥2 +

γ2

p2
∥ĥi,t+1 − hi,⋆∥2

)
(25)
= p

n∑
i=1

(
∥x̄− ȳ∥2 + ∥x̄− xi + yi − ȳ∥2

)
+(1− p)

n∑
i=1

(
∥x̂i,t+1 − x⋆∥2 +

γ2

p2
∥ĥi,t+1 − hi,⋆∥2

)
= p

n∑
i=1

∥xi − yi∥2 + (1− p)
n∑
i=1

(
∥x̂i,t+1 − x⋆∥2 +

γ2

p2
∥ĥi,t+1 − hi,⋆∥2

)

=
n∑
i=1

[
p

∥∥∥∥x̂i,t+1 −
γ

p
ĥi,t+1 −

(
x⋆ −

γ

p
hi,⋆

)∥∥∥∥2
+(1− p)

(
∥x̂i,t+1 − x⋆∥2 +

γ2

p2
∥ĥi,t+1 − hi,⋆∥2

)]
.

STEP 3 (Simple algebra). Next, we expand the squared norm
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and collect the terms, obtaining

Et [Ψt+1 | η1,t, . . . , ηn,t]

=
n∑
i=1

[
p∥x̂i,t+1 − x⋆∥2 + p

γ2

p2
∥ĥi,t+1 − hi,⋆∥2 − 2γ⟨x̂i,t+1 − x⋆, ĥi,t+1 − hi,⋆⟩

+ (1− p)
(
∥x̂i,t+1 − x⋆∥2 +

γ2

p2
∥ĥi,t+1 − hi,⋆∥2

)]
=

n∑
i=1

[
∥x̂i,t+1 − x⋆∥2 − 2γ⟨x̂i,t+1 − x⋆, ĥi,t+1 − hi,⋆⟩+

γ2

p2
∥ĥi,t+1 − hi,⋆∥2

]

=
n∑
i=1

[∥∥∥x̂i,t+1 − x⋆ − γ
(
ĥi,t+1 − hi,⋆

)∥∥∥2 − γ2
∥∥∥ĥi,t+1 − hi,⋆

∥∥∥2
+
γ2

p2
∥ĥi,t+1 − hi,⋆∥2

]

=
n∑
i=1

[∥∥∥x̂i,t+1 − x⋆ − γ
(
ĥi,t+1 − hi,⋆

)∥∥∥2 + (1− p2
) γ2
p2
∥ĥi,t+1 − hi,⋆∥2

]
.

STEP 4 (One-step expectation w.r.t. local coin tosses ηi,t).
Applying the expectation with respect to (independent) coin tosses
ηi,t and using the tower property we get
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Et [Ψt+1]

=
n∑
i=1

[
qi

(
∥xi,t − γ(∇fi(xi,t)− hi,t)− x⋆ − γ (hi,t − hi,⋆)∥2

+
(
1− p2

) γ2
p2
∥hi,t − hi,⋆∥2

)
+ (1− qi)

(
∥xi,t − x⋆ − γ (∇f(xi,t)− hi,⋆)∥2

+
(
1− p2

) γ2
p2
∥∇f(xi,t)− hi,⋆∥2

)]

=
n∑
i=1

[
qi

(
∥xi,t − x⋆ − γ (∇fi(xi,t)− hi,⋆)∥2 +

(
1− p2

) γ2
p2
∥hi,t − hi,⋆∥2

)
+ (1− qi)

(
∥xi,t − x⋆ − γ (∇f(xi,t)− hi,⋆)∥2

+
(
1− p2

) γ2
p2
∥∇f(xi,t)− hi,⋆∥2

)]

=
n∑
i=1

[
∥xi,t − x⋆ − γ (∇fi(xi,t)− hi,⋆)∥2

+ (1− qi)
(
1− p2

) γ2
p2
∥∇f(xi,t)− hi,⋆∥2 + qi

(
1− p2

) γ2
p2
∥hi,t − hi,⋆∥2

]

=
n∑
i=1

[
∥wi,t − wi,⋆∥2 + (1− qi)

(
1− p2

) γ2
p2
∥∇f(xi,t)− hi,⋆∥2

+ qi
(
1− p2

) γ2
p2
∥hi,t − hi,⋆∥2

]
.

Next, we upper bound the first two terms of the above equality
by adjusting the stepsize.

Lemma B.2. If 0 < γ ≤ mini

{
1
Li

p2

1−qi(1−p2)

}
, then

∥wi,t − wi,⋆∥2 + (1− qi)
(
1− p2

) γ2
p2
∥∇f(xi,t)− hi,⋆∥2 ≤ (1− γµ)∥xi,t − x⋆∥2.
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Proof of Lemma B.2. After some algebraic transformations we get

∥wi,t − wi,⋆∥2 + (1− qi)
(
1− p2

) γ2
p2
∥∇f(xi,t)− hi,⋆∥2

= ∥xi,t − x⋆ − γ (∇fi(xi,t)− hi,⋆)∥2 + (1− qi)
(
1− p2

) γ2
p2
∥∇f(xi,t)− hi,⋆∥2

= ∥xi,t − x⋆∥2 − 2γ ⟨xi,t − x⋆,∇fi(xi,t)− hi,⋆⟩

+ γ2 ∥∇fi(xi,t)− hi,⋆∥2 + (1− qi)
(
1− p2

) γ2
p2
∥∇f(xi,t)− hi,⋆∥2

≤ (1− γµ) ∥xi,t − x⋆∥2 − 2γDfi(xi,t, x⋆)

+ γ2

(
1 +

(1− qi)
(
1− p2

)
p2

)
∥∇fi(xi,t)− hi,⋆∥2

≤ (1− γµ) ∥xi,t − x⋆∥2 − 2γDfi(xi,t, x⋆)

(
1− γLi

(
p2 + (1− qi)

(
1− p2

)
p2

))
≤ (1− γµ) ∥xi,t − x⋆∥2 ,

where we used the bound ∥∇fi(xi,t)− hi,⋆∥2 ≤ 2LiDfi(xi,t, x⋆) and the
last inequality holds since γ ≤ 1

Li

p2

1−qi(1−p2).

Proof of Theorem 3.5. The proof of the theorem is direct combina-
tion of the above proved lemmas.

Et [Ψt+1] =
n∑
i=1

[
∥xi,t − x⋆ − γ (∇fi(xi,t)− hi,⋆)∥2

+ (1− qi)
(
1− p2

) γ2
p2
∥∇f(xi,t)− hi,⋆∥2

+ qi
(
1− p2

) γ2
p2
∥hi,t − hi,⋆∥2

]

≤
n∑
i=1

[
(1− γµ) ∥xi,t − x⋆∥2 + qi

(
1− p2

) γ2
p2
∥hi,t − hi,⋆∥2

]

≤ (1− γµ)
n∑
i=1

∥xi,t − x⋆∥2 + qmax
(
1− p2

) γ2
p2

n∑
i=1

∥hi,t − hi,⋆∥2

≤ max
{
1− γµ, qmax

(
1− p2

)}
Ψt

=
(
1−min

{
γµ, 1− qmax

(
1− p2

)})
Ψt.
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B.4 Proof of Theorem 3.6

From the choice of qi = 1−1/κi
1−1/κmax

, we immediately imply qmax = 1.
Furthermore, choosing the optimal p = 1√

κmax
, we get

γ = min
i

{
1

Li

p2

1− qi (1− p2)

}
= min

i

{
Lip

2

Liµmin

}
=

1

Lmax
.

Now, if we plug these values back to the rate (10), we get the
best rate of ProxSkip as

1−min
{
γµ, 1− qmax

(
1− p2

)
}
}
= 1−min

{
µ

Lmax
, p2
}

= 1− µ

Lmax
= 1− 1

κmax
.

This implies O
(
κmax log

1
ε

)
total iteration complexity of the method.

Due to the choice p = 1√
κmax

, the method enjoys O
(√

κmax log
1
ε

)
accel-

erated communication complexity.
We have two geometric random variables, Θ ∼ Geom(p) and

Hi ∼ Geom(1 − qi), for each client describing local training. From
the algorithm description, we see that the number of local steps
for client i is min(Θ, Hi) which is still a Geometric random variable
with parameter 1−qi(1−p). Therefore, the expected number of local
steps for client i is the inverse of that parameter, i.e., 1

1−qi(1−p). If we
plug in the values for p and qi, we have

E [min(Θ, Hi)] =
1

1− qi(1− p)
=

1

1−
(
1− 1√

κmax

)
1−1/κi

1−1/κmax

=
1

1− 1−1/κi
1+1/√κmax

=
1 + 1/√κmax

1/κi + 1/√κmax

=
κi(1 +

√
κmax)

κi +
√
κmax

≤ min(κi,
√
κmax),

where the last inequality can be verified with simple algebraic steps.
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C Proofs for Section 5 (VR-GradSkip+)

Here we start proving convergence of Algorithm 3 by first prov-
ing some auxiliary lemmas. Let

wt := xt − γgt, and w⋆ := x⋆ − γ∇f(x⋆).

Lemma C.1. If γ > 0 and Cω ∈ Bd(ω), CΩ ∈ Bd(Ω), then

Et
[
Ψt+1 − γ2Wσt+1 | gt

]
≤ ∥wt − w⋆∥2

+

(
1− 1

(1 + ω)2

)
γ2(1 + ω)2 ∥gt − h⋆∥2I−(I+Ω)−1

+

(
1− 1

(1 + ω)2

)
γ2(1 + ω)2 ∥ht − h⋆∥2(I+Ω)−1 ,

where the expectation is with respect to the randomness from Cω
and CΩ.

Proof of Lemma C.1. In order to simplify notation, let P (·) :=

proxγ(1+ω)ψ(·), and

x := x̂t+1 − γ(1 + ω)ĥt+1, y := x⋆ − γ(1 + ω)h⋆. (29)

STEP 1 (Optimality conditions). Using the first-order opti-
mality conditions for f + ψ and using h⋆ := ∇f(x⋆), we obtain the
following fixed-point identity for x⋆:

x⋆ = proxγ(1+ω)ψ (x⋆ − γ(1 + ω)h⋆)
(29)
= P (y). (30)

STEP 2 (Recalling the steps of the method). Recall that
the vectors xt+1 and ht+1 are in Algorithm 3 updated as follows:

xt+1 = x̂t+1 − γĝt = x̂t+1 −
1

1 + ω
Cω (x̂t+1 − P (x)) , (31)

and

ht+1 = ĥt+1+
1

γ(1 + ω)
(xt+1− x̂t+1) = ĥt+1−

1

γ(1 + ω)2
Cω (x̂t+1 − P (x)) . (32)
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STEP 3 (One-step expectation of the Lyapunov function).
The expected value of the Lyapunov function

Ψt := ∥xt − x⋆∥2 + γ2(1 + ω)2∥ht − h⋆∥2 + γ2Wσt (33)

at time t+ 1, with respect to the randomness of Cω, is

Et

[
Ψt+1 − γ2Wσt+1 | CΩ, gt

]
= Et

[∥∥∥∥x̂t+1 −
1

1 + ω
Cω (x̂t+1 − P (x))− x⋆

∥∥∥∥2 | CΩ, gt

]

+ Et

[
γ2(1 + ω)2

∥∥∥∥ĥt+1 −
1

γ(1 + ω)2
Cω (x̂t+1 − P (x))− h⋆

∥∥∥∥2 | CΩ, gt

]

= Et

[
∥x̂t+1 − x⋆∥2 −

2

1 + ω
⟨Cω (x̂t+1 − P (x)) , x̂t+1 − x⋆⟩

+
1

(1 + ω)2
∥Cω (x̂t+1 − P (x))∥2 | CΩ, gt

]

+ Et

[
γ2(1 + ω)2

∥∥∥ĥt+1 − h⋆

∥∥∥2 − 2γ
〈
Cω (x̂t+1 − P (x)) , ĥt+1 − h⋆

〉
+

1

(1 + ω)2
∥Cω (x̂t+1 − P (x))∥2 | CΩ, gt

]
≤ ∥x̂t+1 − x⋆∥2 +

2

1 + ω
⟨P (x)− x̂t+1, x̂t+1 − x⋆⟩+

1

1 + ω
∥P (x)− x̂t+1∥2

+ γ2(1 + ω)2
∥∥∥ĥt+1 − h⋆

∥∥∥2 + 2

1 + ω

〈
P (x)− x̂t+1, γ(1 + ω)(ĥt+1 − h⋆)

〉
+

1

1 + ω
∥P (x)− x̂t+1∥2

= ∥x̂t+1 − x⋆∥2 +
1

1 + ω

(
∥P (x)− x⋆∥2 − ∥x̂t+1 − x⋆∥2

)
+ γ2(1 + ω)2

∥∥∥ĥt+1 − h⋆

∥∥∥2
+

1

1 + ω

(∥∥∥P (x)− x̂t+1 + γ(1 + ω)(ĥt+1 − h⋆)
∥∥∥2 − γ2(1 + ω)2

∥∥∥ĥt+1 − h⋆

∥∥∥2)
=

(
1− 1

1 + ω

)(
∥x̂t+1 − x⋆∥2 + γ2(1 + ω)2

∥∥∥ĥt+1 − h⋆

∥∥∥2)
+

1

1 + ω

(
∥P (x)− x⋆∥2 +

∥∥∥P (x)− x̂t+1 + γ(1 + ω)(ĥt+1 − h⋆)
∥∥∥2)

=

(
1− 1

1 + ω

)(
∥x̂t+1 − x⋆∥2 + γ2(1 + ω)2

∥∥∥ĥt+1 − h⋆

∥∥∥2)
+

1

1 + ω

(
∥P (x)− P (y)∥2 + ∥P (x)− x+ y − P (y)∥2

)
.

STEP 4 (Applying firm non-expansiveness). Applying firm
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non-expansiveness of prox operator P , this leads to the inequality

Et
[
Ψt+1 − γ2Wσt+1 | CΩ, gt

]
≤
(
1− 1

1 + ω

)(
∥x̂t+1 − x⋆∥2 + γ2(1 + ω)2

∥∥∥ĥt+1 − h⋆

∥∥∥2)
+

1

1 + ω
∥x− y∥2

=

(
1− 1

1 + ω

)(
∥x̂t+1 − x⋆∥2 + γ2(1 + ω)2

∥∥∥ĥt+1 − h⋆

∥∥∥2)
+

1

1 + ω

∥∥∥x̂t+1 − γ(1 + ω)ĥt+1 − (x⋆ − γ(1 + ω)h⋆)
∥∥∥2

=

(
1− 1

1 + ω

)(
∥x̂t+1 − x⋆∥2 + γ2(1 + ω)2

∥∥∥ĥt+1 − h⋆

∥∥∥2)
+

1

1 + ω

∥∥∥x̂t+1 − x⋆ − γ(1 + ω)
(
ĥt+1 − h⋆

)∥∥∥2 .
STEP 5 (Simple algebra). Next, we expand the squared norm

and collect the terms, obtaining

Et
[
Ψt+1 − γ2Wσt+1 | CΩ, gt

]
≤
(
1− 1

1 + ω

)(
∥x̂t+1 − x⋆∥2 + γ2(1 + ω)2

∥∥∥ĥt+1 − h⋆

∥∥∥2)
+

1

1 + ω
∥x̂t+1 − x⋆∥2 − 2γ⟨x̂t+1 − x⋆, ĥt+1 − h⋆⟩+ γ2(1 + ω)∥ĥt+1 − h⋆∥2

= ∥x̂t+1 − x⋆∥2 − 2γ⟨x̂t+1 − x⋆, ĥt+1 − h⋆⟩+ γ2(1 + ω)2∥ĥt+1 − h⋆∥2

= ∥x̂t+1 − x⋆ − γ(ĥt+1 − h⋆)∥2 − γ2∥ĥt+1 − h⋆∥2 + γ2(1 + ω)2∥ĥt+1 − h⋆∥2

= ∥x̂t+1 − x⋆ − γ(ĥt+1 − h⋆)∥2 +
(
1− 1

(1 + ω)2

)
γ2(1 + ω)2∥ĥt+1 − h⋆∥2.

STEP 6 (Tower property). Applying the expectation with re-
spect to the randomness of CΩ and using the tower property, we
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get

Et
[
Ψt+1 − γ2Wσt+1 | gt

]
= Et

[∥∥∥xt − γ(gt − ĥt+1)− x⋆ − γ(ĥt+1 − h⋆)
∥∥∥2 | gt]

+

(
1− 1

(1 + ω)2

)
γ2(1 + ω)2Et

[∥∥gt − (I+Ω)−1CΩ (gt − ht)− h⋆
∥∥2 | gt]

= ∥xt − γgt − (x⋆ − γh⋆)∥2

+

(
1− 1

(1 + ω)2

)
γ2(1 + ω)2Et

[∥∥gt − h⋆ − (I+Ω)−1CΩ (gt − ht)
∥∥2 | gt]

≤ ∥wt − w⋆∥2 +
(
1− 1

(1 + ω)2

)
γ2(1 + ω)2 ∥gt − h⋆∥2

+

(
1− 1

(1 + ω)2

)
γ2(1 + ω)2

(
2 ⟨gt − h⋆, ht − gt⟩(I+Ω)−1 + ∥gt − ht∥2(I+Ω)−1

)
= ∥wt − w⋆∥2 +

(
1− 1

(1 + ω)2

)
γ2(1 + ω2)

2 ∥gt − h⋆∥2

+

(
1− 1

(1 + ω)2

)
γ2(1 + ω2)

2
(
∥ht − h⋆∥2(I+Ω)−1 − ∥gt − h⋆∥2(I+Ω)−1

)
= ∥wt − w⋆∥2 +

(
1− 1

(1 + ω)2

)
γ2(1 + ω)2 ∥gt − h⋆∥2I−(I+Ω)−1

+

(
1− 1

(1 + ω)2

)
γ2(1 + ω)2 ∥ht − h⋆∥2(I+Ω)−1 .

Next, we upper bound the first two terms.

Lemma C.2. Denote Ω̃ = I+ ω(ω + 2)Ω(I+Ω)−1. Then

Et
[
∥wt − w⋆∥2

]
+

(
1− 1

(1 + ω)2

)
(1 + ω)2γ2Et

[
∥gt − h⋆∥2I−(I+Ω)−1

]
≤ (1− γµ) ∥xt − x⋆∥2 − 2γ

(
1− γAλmax(LΩ̃)

)
Df(xt, x⋆)

+ γ2λmax(LΩ̃)Bσt + γ2λmax(LΩ̃)C.

Proof of Lemma C.2. Expanding the first term and rearranging
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terms, we get

Et
[
∥wt − w⋆∥2

]
+

(
1− 1

(1 + ω)2

)
(1 + ω)2γ2Et

[
∥gt − h⋆∥2I−(I+Ω)−1

]
= Et

[
∥xt − x⋆ − γ (gt −∇f(x⋆))∥2

]
+ ω(ω + 2)γ2Et

[
∥gt −∇f(x⋆)∥2Ω(I+Ω)−1

]
= ∥xt − x⋆∥2 − 2γ ⟨xt − x⋆,∇f(xt)−∇f(x⋆)⟩

+ γ2Et
[
∥gt −∇f(x⋆)∥2

]
+ ω(ω + 2)γ2Et

[
∥gt −∇f(x⋆)∥2Ω(I+Ω)−1

]
≤ (1− γµ) ∥xt − x⋆∥2 − 2γDf(xt, x⋆) + γ2Et

[
∥gt −∇f(x⋆)∥2Ω̃

]
≤ (1− γµ) ∥xt − x⋆∥2 − 2γDf(xt, x⋆) + γ2λmax(LΩ̃)Et

[
∥gt −∇f(x⋆)∥2L−1

]
≤ (1− γµ) ∥xt − x⋆∥2 − 2γDf(xt, x⋆)

+ γ2λmax(LΩ̃) (2ADf(xt, x⋆) + Bσt + C)

= (1− γµ) ∥xt − x⋆∥2 − 2γ
(
1− γAλmax(LΩ̃)

)
Df(xt, x⋆)

+ γ2λmax(LΩ̃)Bσt + γ2λmax(LΩ̃)C.

Proof of Theorem 5.2. The proof is a direct combination of the two
lemmas we have proved.

E [Ψt+1] ≤ (1− γµ) ∥xt − x⋆∥2 − 2γ
(
1− γAλmax(LΩ̃)

)
Df(xt, x⋆)

+ γ2λmax(LΩ̃)Bσt + γ2λmax(LΩ̃)C

+

(
1− 1

(1 + ω)2

)
γ2(1 + ω)2 ∥ht − h⋆∥2(I+Ω)−1

+ γ2W
(
2ÃDf(xt, x⋆) + B̃σt + C̃

)
= (1− γµ) ∥xt − x⋆∥2 − 2γ

(
1− γ(Aλmax(LΩ̃) +WÃ)

)
Df(xt, x⋆)

+
ω(ω + 2)

(1 + λmin(Ω))(1 + ω)2
γ2(1 + ω)2 ∥ht − h⋆∥2

+

(
λmax(LΩ̃)B

W
+ B̃

)
γ2Wσt + γ2(λmax(LΩ̃)C +WC̃).

Next we choose the stepsize γ ≤ 1

Aλmax(LΩ̃)+WÃ
so that the term

with Df(xt, x⋆) is non-negative and can be suppressed for further
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steps. Let δ = 1 − ω(ω+2)
(1+λmin(Ω))(ω+1)2 = 1 − 1

1+λmin(Ω)

(
1− 1

(1+ω)2

)
∈ [0, 1],

β = 1 − B̃ − λmax(LΩ̃)B
W > 0, provided that W > λmax(LΩ̃)B

1−B̃ , and continue
the above derivation

E [Ψt+1] ≤ max (1− γµ, 1− δ, 1− β)Ψt + γ2(λmax(LΩ̃)C +WC̃)

= (1−min(γµ, δ, β))Ψt + γ2(λmax(LΩ̃)C +WC̃)

≤ (1−min(γµ, δ, β))t+1Ψ0 + γ2
λmax(LΩ̃)C +WC̃

min(γµ, δ, β)
.

D Proofs for Section 4 (GradSkip+)

D.1 Proof of Lemma 4.2

The proof follows from the following simple inequalities:

∥x∥2(I+Ω)−1 ≤ λmax

(
(I+Ω)−1

)
∥x∥2 = 1

1 + λmin(Ω)
∥x∥2,

∥(I+Ω)−1C(x)∥2 ≥ λmin

(
(I+Ω)−1

)2 ∥C(x)∥2 = 1

(1 + λmax(Ω))2
∥C(x)∥2.

D.2 Proof of Theorem 4.5

Since GradSkip+ is a special case of a VR-GradSkip+, Theorem
4.5 is a corollary of Theorem 5.2. To see this, first, let us prove the
following lemma.

Lemma D.1. Let Assumption 4.4 hold. Then for the gradient esti-

mator gt = ∇f(xt), Assumption 5.1 holds with the following parame-

ters:

A = 1, B = 0, C = 0, Ã = 0, B̃ = 0, C̃ = 0, σt ≡ 0.
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Proof. The proof is rather trivial and follows from the L-smoothness
of f ,

E
[
∥gt −∇f(x⋆)∥2L−1

]
= ∥∇f(xt)−∇f(x⋆)∥2L−1 ≤ 2Df(xt, x⋆).

Having this, Theorem 5.2 reduces to Theorem 4.5.
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