

GradSkip: Communication-Accelerated Local Gradient **Methods with Better Computational Complexity**

Artavazd Maranjyan

MATHEMATICS IN ARMENIA: ADVANCES AND PERSPECTIVES July 5, 2023

Artavazd Maranjyan, Mher Safaryan, Peter Richtárik

GradSkip: Communication-Accelerated Local Gradient Methods with Better Computational Complexity

arXiv:2210.16402, 2022

Co-authors

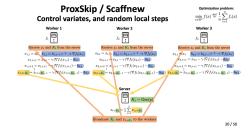
Mher Safaryan

Peter Richtárik

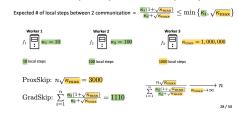
Outline of the Talk

- 1. What is Federated Learning?
- 2. What is Local Training?
- 3. The ProxSkip Algorithm
- 4. GradSkip: Algorithm
- 5. GradSkip: Theory
- 6. GradSkip: Experiments

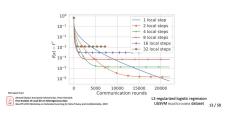
The First Federated Learning App: Next-Word Prediction



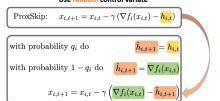
GradSkip: Computational Complexity



What does Local Training do?



Key theoretical technique



Large maximum smoothness constant

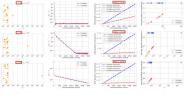
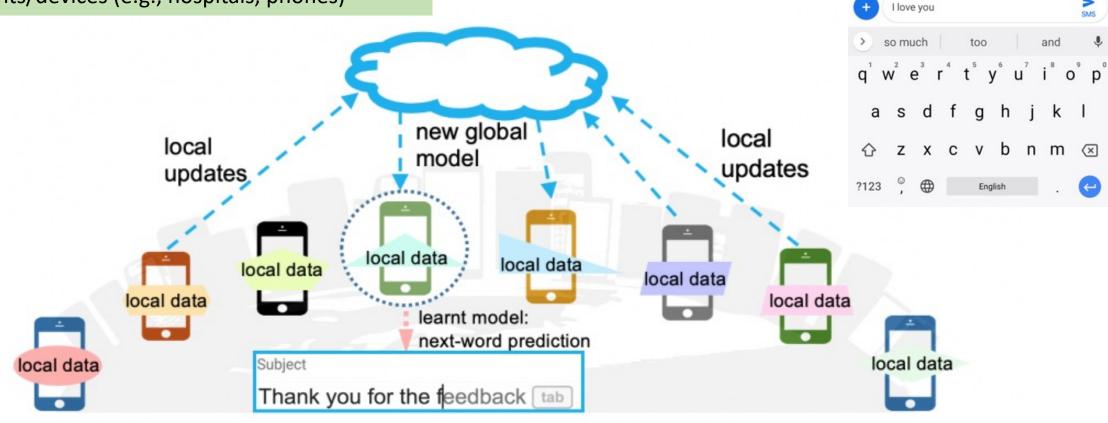


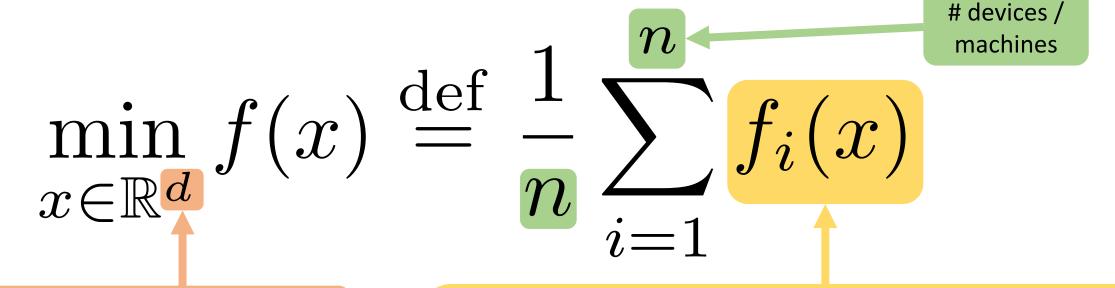
Figure 1: In the first column we show the smoothness constants for devices. In the second column we show the convergence per communication rounds. In the third column we show theoretical and practical difference between number of gradient computations. In the last column we have the average gradient computations for each device having L₃ is more constant of the contraction of the contract

The First Federated Learning App: Next-Word Prediction

Federated Learning is collaborative machine learning from private data stored across a (large) number of clients/devices (e.g., hospitals, phones)



Optimization Formulation of Federated Learning



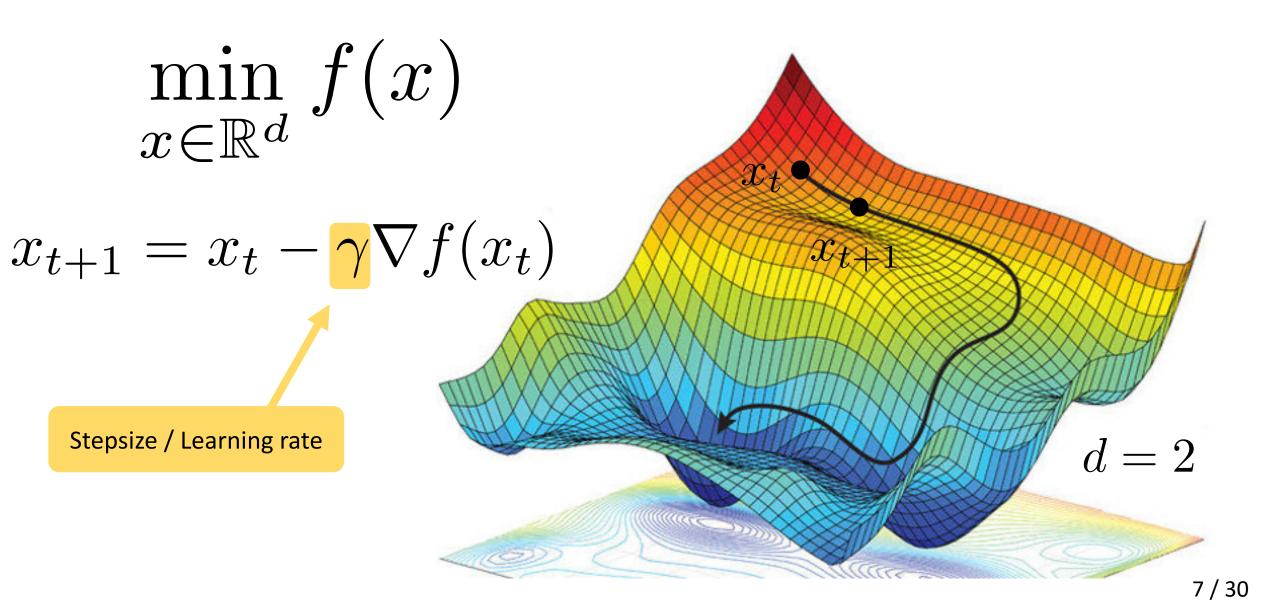
model parameters / features

Loss on local data \mathcal{D}_i stored on device i

$$f_i(x) = \mathbb{E}_{\xi \sim \mathcal{D}_i} f_{i,\xi}(x)$$

The datasets $\mathcal{D}_1, \ldots, \mathcal{D}_n$ can be arbitrarily heterogeneous

Gradient Descent



Distributed Gradient Descent

(Each worker performs 1 GD step using its local function, and the results are averaged)

Optimization problem:

$$\min_{x \in \mathbb{R}^d} f(x) \stackrel{\text{def}}{=} \frac{1}{n} \sum_{i=1}^n f_i(x)$$

Worker 1

Receive x_t from the server

$$x_{1,t} = x_t$$

$$x_{1,t+1} = x_{1,t} - \gamma \nabla f_1(x_{1,t})$$

Worker 2

Receive x_t from the server

$$x_{2,t} = x_t$$

$$x_{2,t+1} = x_{2,t} - \gamma \nabla f_2(x_{2,t})$$

Server

Worker 3

Receive x_t from the server

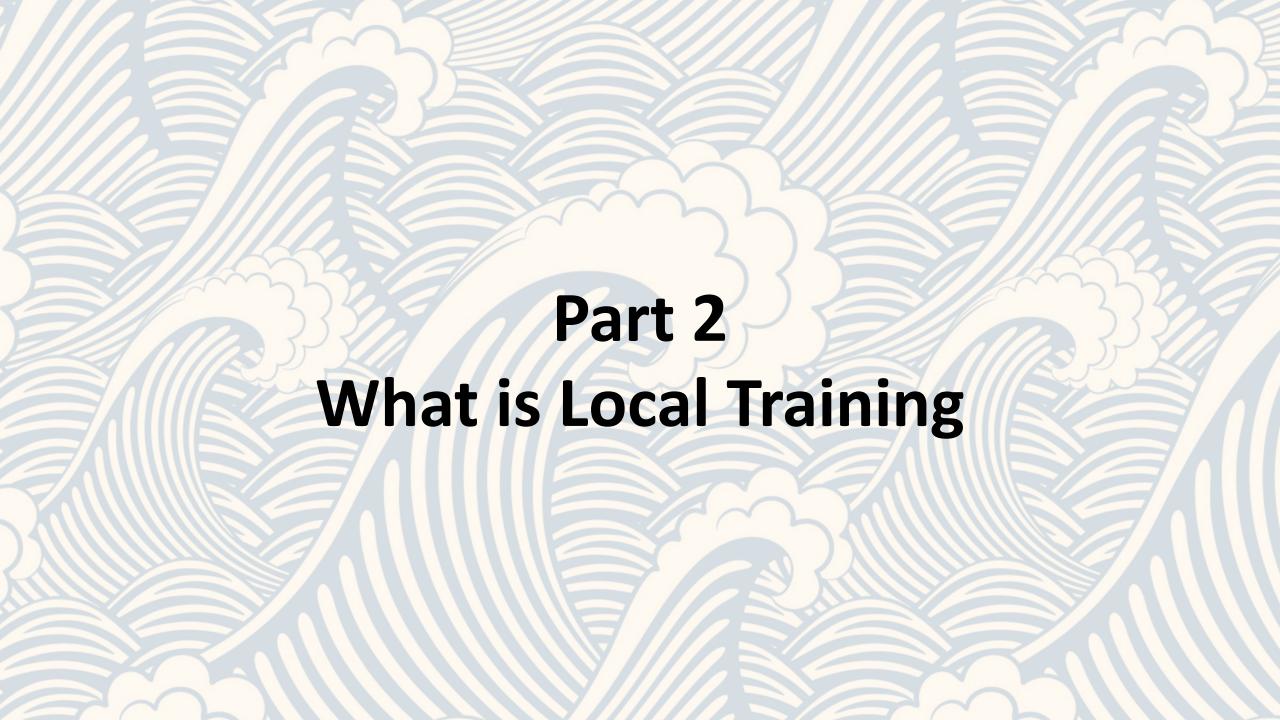
$$x_{3,t} = x_t$$

$$x_{3,t+1} = x_{3,t} - \gamma \nabla f_3(x_{3,t})$$

d-dimensional vector computed by machine 1

$$x_{t+1} = \frac{1}{3} \sum_{i=1}^{3} x_{i,t+1}$$

Broadcast x_{t+1} to the workers



Distributed Local Gradient Descent

(Each worker performs K GD steps using its local function, and the results are averaged)

Optimization problem:

$$\min_{x \in \mathbb{R}^d} f(x) \stackrel{\text{def}}{=} \frac{1}{n} \sum_{i=1}^n f_i(x)$$

Worker 1

Receive x_t from the server

$$x_{1,t} = x_t$$

$$x_{1,t+1} = x_{1,t} - \gamma \nabla f_1(x_{1,t})$$

$$x_{1,t+2} = x_{1,t+1} - \gamma \nabla f_1(x_{1,t+1})$$

$$\vdots$$

$$x_{1,t+K} = x_{1,t+K-1} - \gamma \nabla f_1(x_{1,t+K-1})$$

Worker 2

Receive x_t from the server

$$x_{2,t} = x_t$$

$$x_{2,t+1} = x_{2,t} - \gamma \nabla f_2(x_{2,t})$$

$$x_{2,t+2} = x_{2,t+1} - \gamma \nabla f_2(x_{2,t+1})$$

$$\vdots$$

$$x_{2,t+K} = x_{2,t+K-1} - \gamma \nabla f_2(x_{2,t+K-1})$$

Worker 3

Receive x_t from the server

$$x_{3,t} = x_t$$

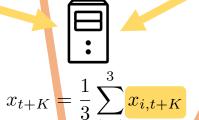
$$x_{3,t+1} = x_{3,t} - \gamma \nabla f_3(x_{3,t})$$

$$x_{3,t+2} = x_{3,t+1} - \gamma \nabla f_3(x_{3,t+1})$$

$$\vdots$$

$$x_{3,t+K} = x_{3,t+K-1} - \gamma \nabla f_3(x_{3,t+K-1})$$

Server



Broadcast x_{t+K} to the workers

Brief History of Local Training Methods

Table 1: Five generations of local training (LT) methods summarizing the progress made by the ML/FL community over the span of 7+ years in the understanding of the communication acceleration properties of LT.

$Generation^{(a)}$	Theory	Assumptions	Comm. Complexity ^(b)	Selected Key References
1. Heuristic	X	—	empirical results only	LocalSGD [Povey et al., 2015]
	X	_	empirical results only	SparkNet [Moritz et al., 2016]
	×	_	empirical results only	FedAvg [McMahan et al., 2017]
2. Homogeneous	1	bounded gradients	sublinear	FedAvg [Li et al., 2020b]
	1	bounded grad. diversity ^(c)	linear but worse than GD	LFGD [Haddadpour and Mahdavi, 2019]
3. Sublinear	1	$\operatorname{standard}^{(\operatorname{d})}$	sublinear	LGD [Khaled et al., 2019]
	1	$\operatorname{standard}$	sublinear	LSGD [Khaled et al., 2020]
4. Linear	1	standard	linear but worse than GD	Scaffold [Karimireddy et al., 2020]
	1	$\operatorname{standard}$	linear but worse than GD	S-Local-GD [Gorbunov et al., 2020a]
	1	$\operatorname{standard}$	linear but worse than GD	FedLin [Mitra et al., 2021]
5. Accelerated	1	standard	linear & better than GD	ProxSkip/Scaffnew [Mishchenko et al., 2022]
	✓	standard	linear & better than GD	ProxSkip-VR

⁽a) Since client sampling (CS) and data sampling (DS) can only worsen theoretical communication complexity, our historical breakdown of the literature into 5 generations of LT methods focuses on the full client participation (i.e., no CS) and exact local gradient (i.e., no DS) setting. While some of the referenced methods incorporate CS and DS techniques, these are irrelevant for our purposes. Indeed, from the viewpoint of communication complexity, all these algorithms enjoy best theoretical performance in the no-CS and no-DS regime.

⁽d) The notorious FL challenge of handling non-i.i.d. data by LT methods was solved by Khaled et al. [2019] (from the viewpoint of optimization). From generation 3 onwards, there was no need to invoke any data/gradient homogeneity assumptions. Handling non-i.i.d. data remains a challenge from the point of view of generalization, typically by considering personalized FL models.

Grigory Malinovsky, Kai Yi, Peter Richtárik

Variance Reduced ProxSkip: Algorithm, Theory and Application to Federated Learning

NeurIPS 2022

⁽b) For the purposes of this table, we consider problem (1) in the *smooth* and *strongly convex* regime only. This is because the literature on LT methods struggles to understand even in this simplest (from the point of view of optimization) regime.

⁽c) Bounded gradient diversity is a uniform bound on a specific notion of gradient variance depending on client sampling probabilities. However, this assumption (as all homogeneity assumptions) is very restrictive. For example, it is not satisfied the standard class of smooth and strongly convex functions.

Why treat all devices equally?

(Each worker performs K GD steps using its local function, and the results are averaged)

Worker 1

Receive x_t from the server

$$x_{1,t} = x_t$$

$$x_{1,t+1} = x_{1,t} - \gamma \nabla f_1(x_{1,t})$$

$$x_{1,t+2} = x_{1,t+1} - \gamma \nabla f_1(x_{1,t+1})$$

$$\vdots$$

$$x_{1,t+K} = x_{1,t+K-1} - \gamma \nabla f_1(x_{1,t+K-1})$$

Worker 2

Receive x_t from the server

$$x_{2,t} = x_t$$

$$x_{2,t+1} = x_{2,t} - \gamma \nabla f_2(x_{2,t})$$

$$x_{2,t+2} = x_{2,t+1} - \gamma \nabla f_2(x_{2,t+1})$$

$$\vdots$$

$$x_{2,t+K} = x_{2,t+K-1} - \gamma \nabla f_2(x_{2,t+K-1})$$

Optimization problem:

$$\min_{x \in \mathbb{R}^d} f(x) \stackrel{\text{def}}{=} \frac{1}{n} \sum_{i=1}^n f_i(x)$$

Worker 3

Receive x_t from the server

$$x_{3,t} = x_t$$

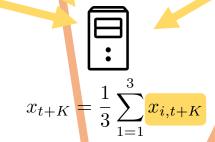
$$x_{3,t+1} = x_{3,t} - \gamma \nabla f_3(x_{3,t})$$

$$x_{3,t+2} = x_{3,t+1} - \gamma \nabla f_3(x_{3,t+1})$$

$$\vdots$$

$$x_{3,t+K} = x_{3,t+K-1} - \gamma \nabla f_3(x_{3,t+K-1})$$

Server

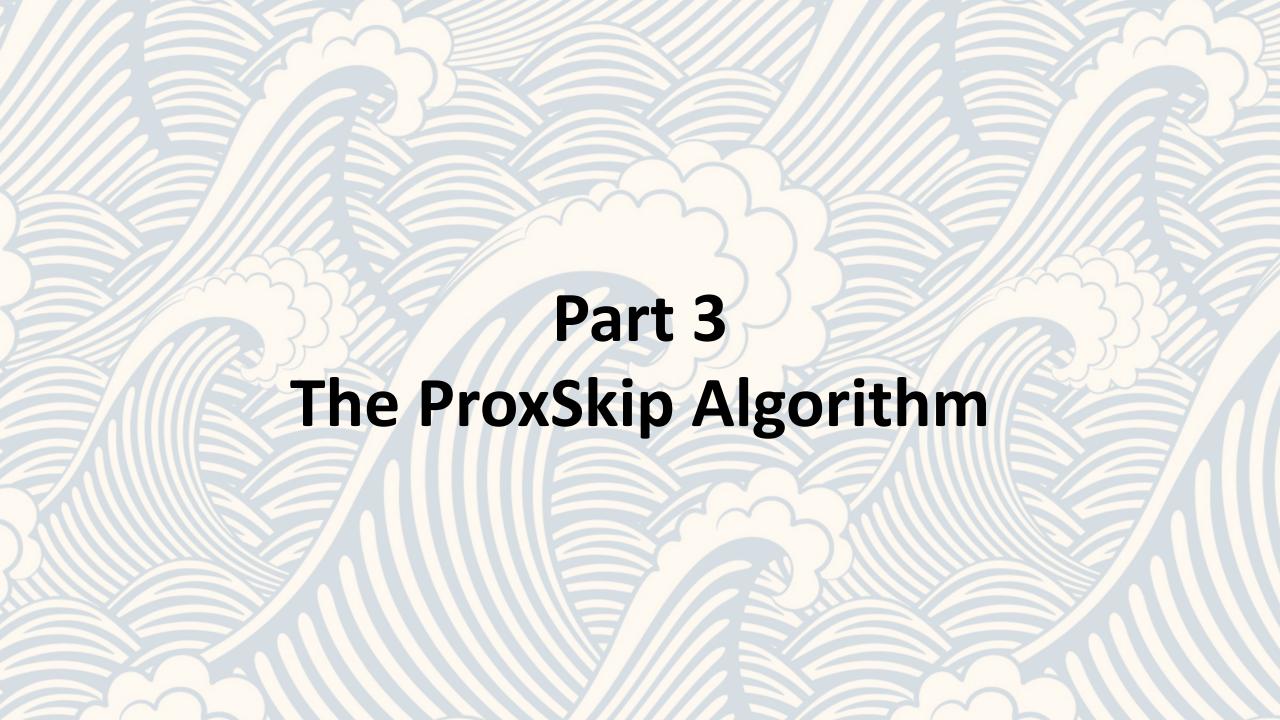


Broadcast x_{t+K} to the workers

Key insight

GradSkip = ProxSkip + Heterogeneity Awareness

Algorithm	Communication Complexity	Computational Complexity
ProxSkip	Accelerated (100 communications)	1000 GD steps per client
GradSkip	Accelerated (100 communications)	10,100,, 1000 GD steps



Konstantin Mishchenko, Grigory Malinovsky, Sebastian Stich, Peter Richtárik **ProxSkip: Yes! Local Gradient Steps Provably Lead to Communication Acceleration! Finally!** *International Conference on Machine Learning*(ICML), 2022

ProxSkip / Scaffnew Control variates, and random local steps

Worker 1

Receive x_t and K_t from the server

$$x_{1,t} = x_{t} \quad h_{1,t} = h_{1,t-1} + ? \rightarrow \nabla f_{1}(x_{\star})$$

$$x_{1,t+1} = x_{1,t} - \gamma \left(\nabla f_{1}(x_{1,t}) - h_{1,t} \right)$$

$$x_{1,t+2} = x_{1,t+1} - \gamma \left(\nabla f_{1}(x_{1,t+1}) - h_{1,t} \right)$$

$$\vdots$$

$$= x_{1,t+K_{t-1}} - \gamma \left(\nabla f_{1}(x_{1,t+K_{t-1}}) - h_{1,t} \right)$$

Worker 2

Receive x_t and K_t from the server

$$x_{1,t} = x_{t} \quad h_{1,t} = h_{1,t-1} + ? \rightarrow \nabla f_{1}(x_{\star}) \qquad x_{2,t} = x_{t} \quad h_{2,t} = h_{2,t-1} + ? \rightarrow \nabla f_{2}(x_{\star}) \qquad x_{3,t} = x_{t} \quad h_{3,t} = h_{3,t-1} + ? \rightarrow \nabla f_{3}(x_{\star})$$

$$x_{1,t+1} = x_{1,t} - \gamma \left(\nabla f_{1}(x_{1,t}) - h_{1,t} \right) \qquad x_{2,t+1} = x_{2,t} - \gamma \left(\nabla f_{1}(x_{2,t}) - h_{2,t} \right) \qquad x_{3,t+1} = x_{3,t} - \gamma \left(\nabla f_{1}(x_{3,t}) - h_{3,t} \right)$$

$$x_{1,t+2} = x_{1,t+1} - \gamma \left(\nabla f_{1}(x_{1,t+1}) - h_{1,t} \right) \qquad \vdots \qquad \vdots \qquad \vdots \qquad \vdots \qquad \vdots$$

$$x_{1,t+K_{t}} = x_{1,t+K_{t}-1} - \gamma \left(\nabla f_{1}(x_{1,t+K_{t}-1}) - h_{1,t} \right) \qquad x_{2,t+K_{t}} = x_{2,t+K_{t}-1} - \gamma \left(\nabla f_{1}(x_{2,t+K_{t}-1}) - h_{2,t} \right) \qquad x_{3,t+K_{t}} = x_{3,t+K_{t}-1} - \gamma \left(\nabla f_{1}(x_{3,t+K_{t}-1}) - h_{3,t} \right)$$

Optimization problem:

$$\min_{x \in \mathbb{R}^d} f(x) \stackrel{\text{def}}{=} \frac{1}{n} \sum_{i=1}^n f_i(x)$$

Worker 3

Receive x_t and K_t from the server

$$x_{3,t} = x_t \quad h_{3,t} = h_{3,t-1} + ? \rightarrow \nabla f_3(x_{\star})$$

$$x_{3,t+1} = x_{3,t} - \gamma \left(\nabla f_1(x_{3,t}) - h_{3,t} \right)$$

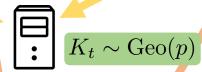
$$\vdots$$

$$x_{3,t+K_t} = x_{3,t+K_{t-1}} - \gamma \left(\nabla f_1(x_{3,t+1}) - h_{3,t} \right)$$

$$\vdots$$

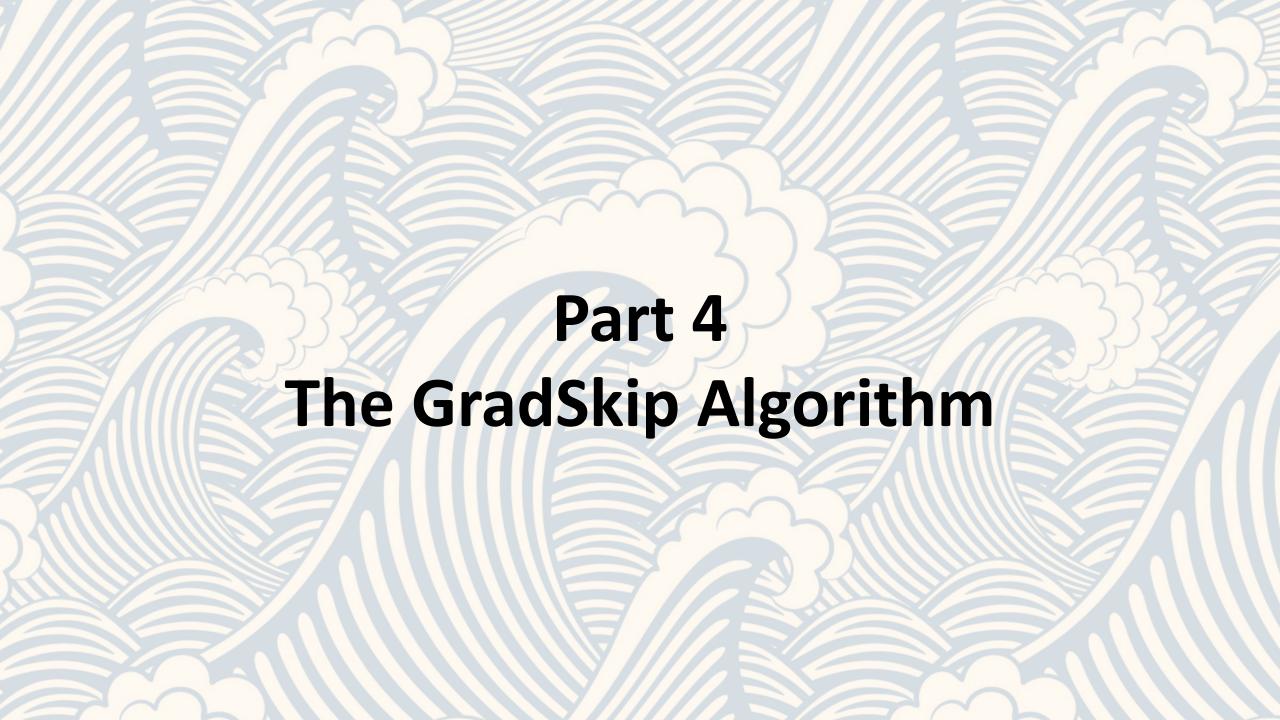
$$x_{3,t+K_t} = x_{3,t+K_{t-1}} - \gamma \left(\nabla f_1(x_{3,t+K_{t-1}}) - h_{3,t} \right)$$

Server



$$x_{t+K_t} = \frac{1}{3} \sum_{i=1}^{3} x_{i,t+K_t}$$

Broadcast K_t and x_{t+K_t} to the workers



GradSkip

Let workers decide how much to work

Worker 1

Receive x_t and K_t from the server

$$x_{1,t} = x_t$$
 $h_{1,t} = h_{1,t-1} + ? \rightarrow \nabla f_1(x_\star)$

$$M_{1,t} \sim \text{Geo}(q_1)$$
 $K_{1,t} = \min\{M_{1,t}, \frac{K_t}{K_t}\}$

$$x_{1,t+1} = x_{1,t} - \gamma (\nabla f_1(x_{1,t}) - h_{1,t})$$

$$x_{1,t+2} = x_{1,t+1} - \gamma \left(\nabla f_1(x_{1,t+1}) - h_{1,t} \right)$$

$$x_{1,t+K_{1,t}} = x_{1,t+K_{1,t}-1} - \gamma \left(\nabla f_1(x_{1,t+K_{1,t}-1}) - h_{1,t} \right)$$

Worker 2

Receive x_t and K_t from the server

$$x_{2,t} = x_t h_{2,t} = h_{2,t-1} + ? \rightarrow \nabla f_2(x_{\star})$$

$$M_{2,t} \sim \text{Geo}(q_2)$$
 $K_{2,t} = \min\{M_{2,t}, \frac{K_t}{K_t}\}$

$$x_{2,t+1} = x_{2,t} - \gamma \left(\nabla f_1(x_{2,t}) - h_{2,t} \right)$$

$$x_{2,t+2} = x_{2,t+1} - \gamma \left(\nabla f_1(x_{2,t+1}) - h_{2,t} \right)$$

$$\dot{x_{2,t+K_{2,t}}} = x_{2,t+K_{2,t}-1} - \gamma \left(\nabla f_2(x_{2,t+K_{2,t}-1}) - h_{2,t} \right)$$

Server

$$x_{t+K_t} = \frac{1}{3} \sum_{i=1}^{3} x_{i,t+K_t}$$

Broadcast K_t and x_{t+K_t} to the workers

Optimization problem:

$$\min_{x \in \mathbb{R}^d} f(x) \stackrel{\text{def}}{=} \frac{1}{n} \sum_{i=1}^n f_i(x)$$

Worker 3

Receive x_t and K_t from the server

$$x_{3,t} = x_t$$
 $h_{3,t} = h_{3,t-1} + ? \rightarrow \nabla f_3(x_*)$

$$M_{3,t} \sim \text{Geo}(q_3)$$
 $K_{3,t} = \min\{M_{3,t}, \frac{K_t}{K_t}\}$

$$x_{3,t+1} = x_{3,t} - \gamma \left(\nabla f_1(x_{3,t}) - h_{3,t} \right)$$

$$x_{3,t+2} = x_{3,t+1} - \gamma \left(\nabla f_1(x_{3,t+1}) - h_{3,t} \right)$$

:

:

:

$$x_{3,t+K_{3,t}} = x_{3,t+K_{3,t}-1} - \gamma \left(\nabla f_3(x_{3,t+K_{3,t}-1}) - h_{3,t} \right)$$

Key theoretical technique

Use random control variate

ProxSkip:
$$x_{i,t+1} = x_{i,t} - \gamma \left(\nabla f_i(x_{i,t}) - h_{i,t} \right)$$

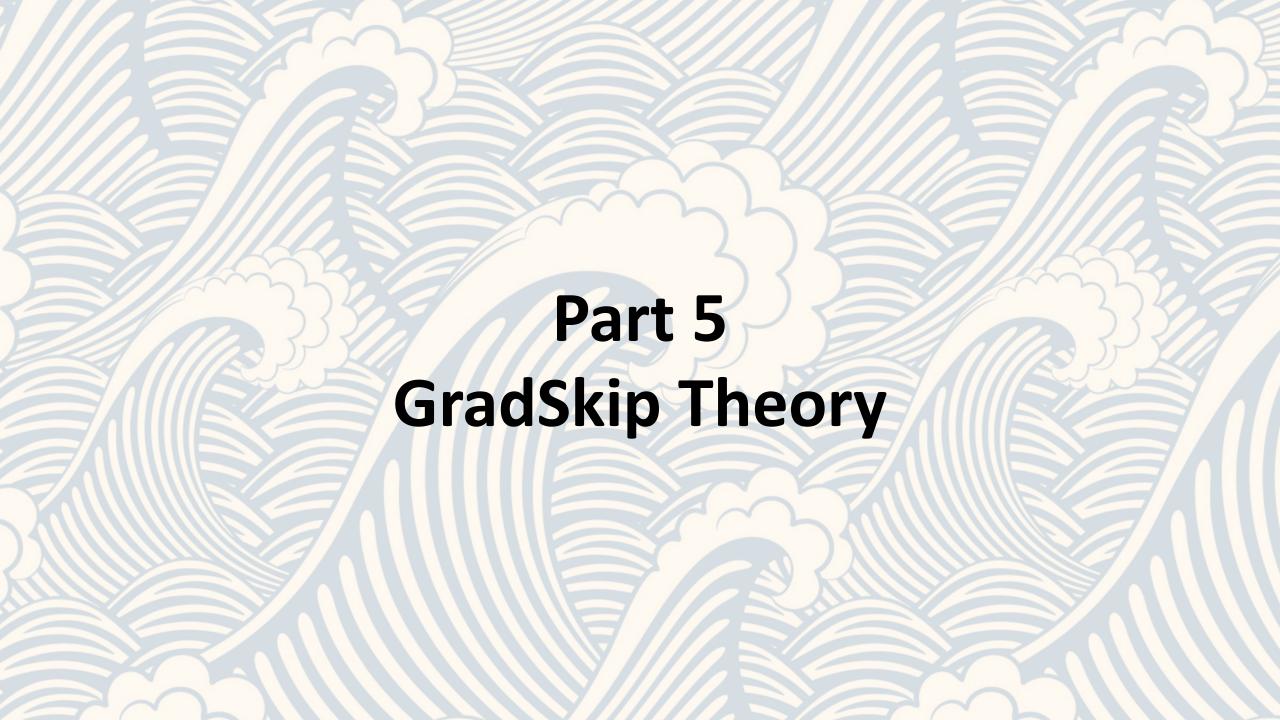
with probability
$$1 - q_i$$
 do

$$|\hat{h}_{i,t+1}| = |h_{i,t}|$$

with probability q_i do

$$\hat{h}_{i,t+1} = \nabla f_i(x_{i,t})$$

$$x_{i,t+1} = x_{i,t} - \gamma \left(\nabla f_i(x_{i,t}) - \hat{h}_{i,t+1} \right)$$



GradSkip: Assumptions same as in ProxSkip

Assumptions:

$$\|\nabla f_i(x) - \nabla f_i(y)\| \le L_i \|x - y\|$$

$$\langle \nabla f_i(x) - \nabla f_i(y), x - y \rangle \ge \mu \|x - y\|^2$$

GradSkip: Bounding the # of Iterations

Theorem:

$$\gamma \le \min_{i} \left\{ \frac{1}{L_i} \frac{p^2}{p^2 + q_i(1 - p^2)} \right\}$$

$$t \ge \max\left\{\frac{1}{\gamma\mu}, \frac{1}{p^2 - q_{\min}(1 - p^2)}\right\} \log\frac{1}{\varepsilon} \Rightarrow \mathbb{E}\left[\Psi_t\right] \le \varepsilon\Psi_0$$

iterations

Lyapunov function:

$$\Psi_t := \sum_{i=1}^n \|x_{i,t} - x_\star\|^2 + \frac{\gamma^2}{p^2} \sum_{i=1}^n \|h_{i,t} - h_{i,\star}\|^2$$

GradSkip: Optimal Probabilities

$$\kappa_i = \frac{L_i}{\mu} \qquad \kappa_{\max} = \frac{L_{\max}}{\mu}$$

$$q_i = \frac{\frac{1}{\kappa_i} - \frac{1}{\kappa_{\max}}}{1 - \frac{1}{\kappa_{\max}}} \qquad p^2 = \frac{1}{\kappa_{\max}}$$

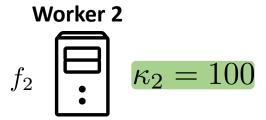
$$\gamma \le \min_i \left\{ \frac{1}{L_i} \frac{p^2}{p^2 + q_i(1 - p^2)} \right\} = \frac{1}{L_{\max}}$$

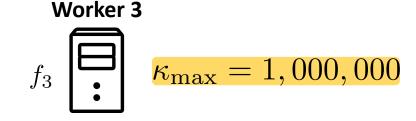
$$t \ge \max\left\{ \frac{1}{\gamma\mu}, \frac{1}{p^2 - q_{\min}(1 - p^2)} \right\} \log \frac{1}{\varepsilon} = \kappa_{\max} \log \frac{1}{\varepsilon} \Rightarrow \mathbb{E}\left[\Psi_t\right] \le \varepsilon \Psi_0$$

GradSkip: Computational Complexity

Expected # of local steps between 2 communication =
$$\frac{\kappa_i(1+\sqrt{\kappa_{\max}})}{\kappa_i+\sqrt{\kappa_{\max}}} \leq \min\left\{\kappa_i,\sqrt{\kappa_{\max}}\right\}$$

Worker 1





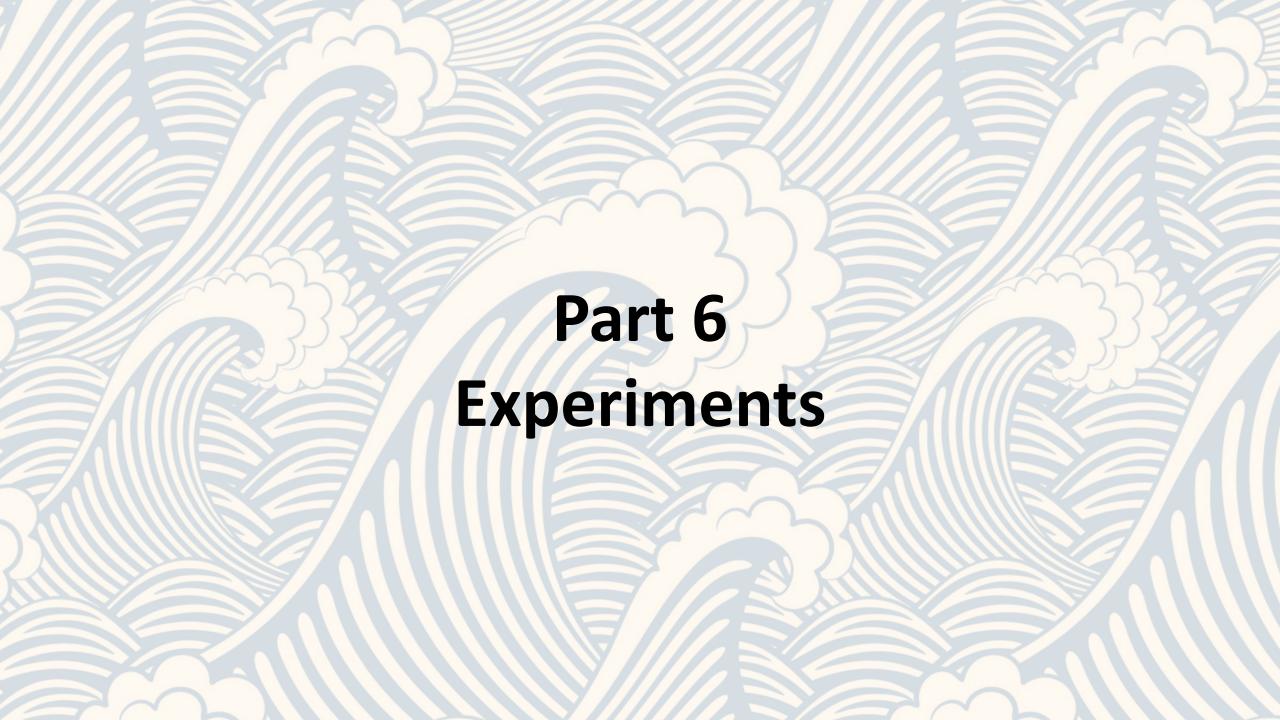
ProxSkip:
$$n\sqrt{\kappa_{\text{max}}} = 3000$$

GradSkip:
$$\sum_{i=1}^{n} \frac{\kappa_i (1 + \sqrt{\kappa_{\text{max}}})}{\kappa_i + \sqrt{\kappa_{\text{max}}}} = 1110$$

$$\frac{n\sqrt{\kappa_{\max}}}{\sum_{i=1}^{n} \frac{\kappa_{i}(1+\sqrt{\kappa_{\max}})}{\kappa_{i}+\sqrt{\kappa_{\max}}}} \xrightarrow{\kappa_{\max} \to \infty} n$$

GradSkip vs ProxSkip

	GradSkip	ProxSkip
Number of iterations	$\kappa_{ ext{max}} \log rac{1}{arepsilon}$	$\kappa_{\max}\log \frac{1}{\varepsilon}$
Expected number of communications	$\sqrt{\kappa_{ ext{max}}}\log rac{1}{arepsilon}$	$\sqrt{\kappa_{\max}}\log \frac{1}{\varepsilon}$
Expected number of local steps between two communications	$\frac{\kappa_i(1+\sqrt{\kappa_{\max}})}{\kappa_i+\sqrt{\kappa_{\max}}} \le \min\left\{\kappa_i, \sqrt{\kappa_{\max}}\right\}$	$\sqrt{\kappa_{ m max}}$
Expected number of local steps	$\sum_{i=1}^{n} \frac{\kappa_i (1 + \sqrt{\kappa_{\text{max}}})}{\kappa_i + \sqrt{\kappa_{\text{max}}}} \approx \sqrt{\kappa_{\text{max}}}$	$n\sqrt{\kappa_{ ext{max}}}$

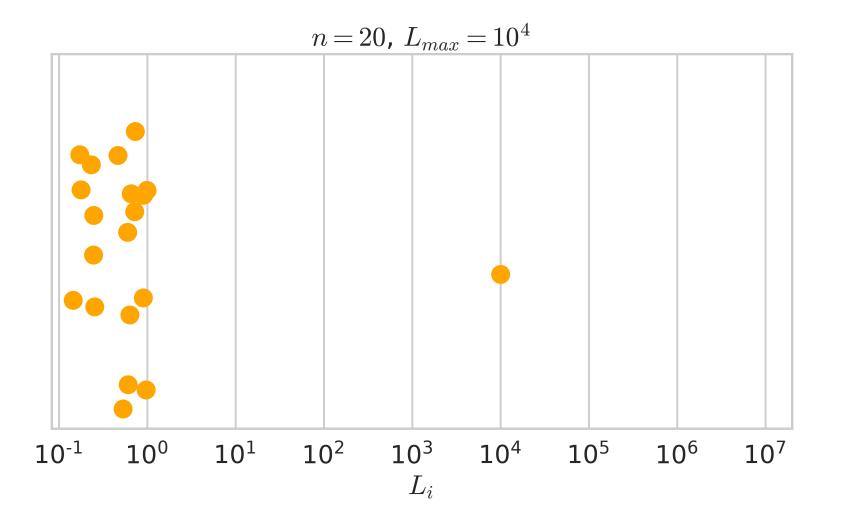


Experimental setup

L2-regularized logistic regression:

$$f(x) = \frac{1}{n} \sum_{i=1}^{n} \log \left(1 + \exp\left(-b_i a_i^{\top} x\right) \right) + \frac{\lambda}{2} ||x||^2$$

$$b_i \in \{-1, +1\}, \lambda = 0.1,$$
$$\mathbf{A}_i = \mathbf{U}_i \mathbf{L}_i \mathbf{V}_i \in \mathbb{R}^{200,300}, \sigma_{max}(\mathbf{A}_i) = L_i$$



Large maximum smoothness constant

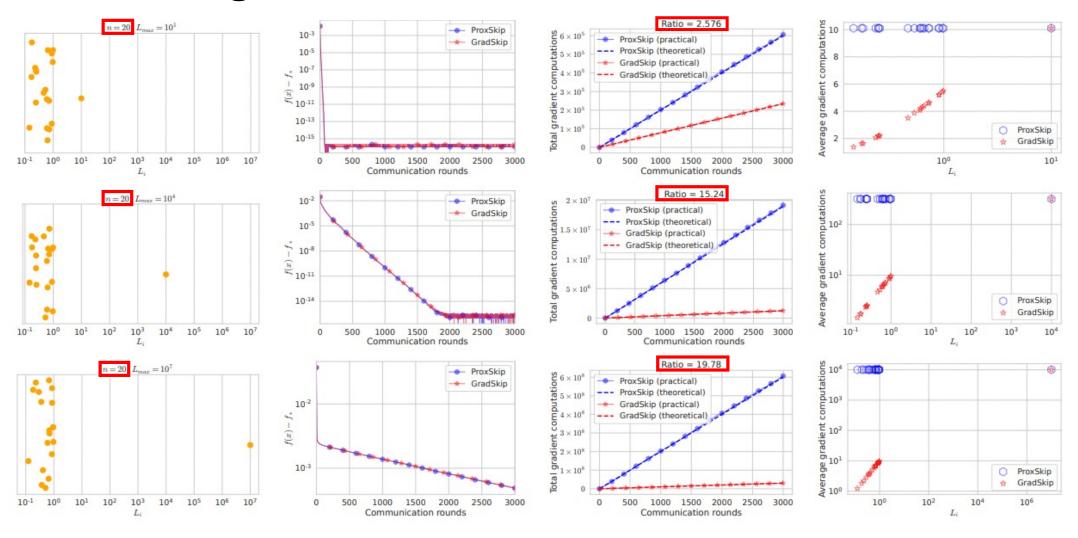


Figure 1: In the first column we show the smoothness constants for devices. In the second column we show the convergence per communication rounds. In the third column we show theoretical and practical difference between number of gradient computations. In the last column we have the average gradient computations for each device having L_i smoothness, we see that for GradSkip the device with $L_i = L_{max}$ does the same number of gradient computations as devices in ProxSkip.

Large number of clients

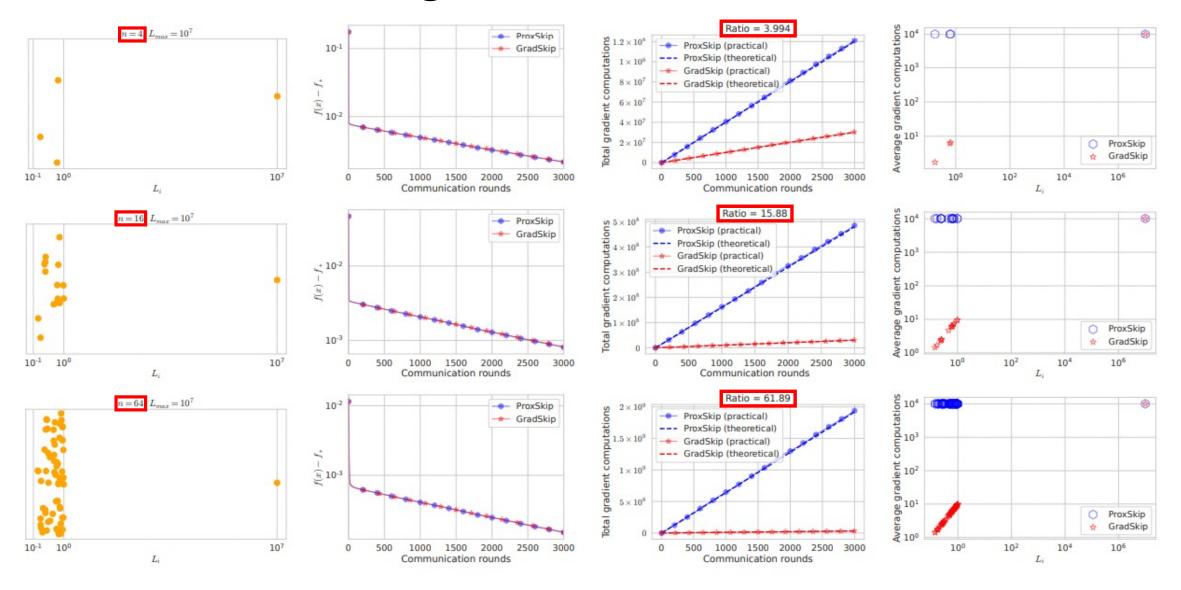


Figure 2: The columns have the same meaning as in Figure 1.

