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The First Federated Learning App: Next-Word Prediction
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GradSkip: Computational Complexity
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What does Local Training do?
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Key theoretical technique
Use random control variate

[ ProxSkip: @i 41 = @iy — v (Vfi(zie) — hiye)

with probability ¢; do higt1 = hiy

with probability 1 — ¢; do ﬁi’t 1= Vi(ziy)
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Tipp1 = Tig — Y (Vfi(zi,t) - Ei,t-*-l) &
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Large maximum smoothness constant
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What is Federated Learning?



The First Federated Learning App: Next-Word Prediction

Federated Learning is collaborative machine learning
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Optimization Formulation of Federated Learning

# devices /
1 (4 machines
: def
min f(z) = — » fi(z)
rERA n “
1=1
# model parameters / features Loss on local data D; stored on device
fiz) = Eenp, fie(T)
The datasets Dy, ..., D,, can be arbitrarily heterogeneous
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Distributed Gradient Descent

(Each worker performs

Worker 1

B

Receive z; from the server
L1t = Tt

T1,t4+1 — L1t — ’val (wl,t)

d-dimensional vector
computed by machine 1

Li41 =
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using its local function, and the results are averaged)
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Server
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Optimization problem:
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. def 1
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Optimization problem:

Distributed Gradient Descent win 70) % LS )

(Each worker performs using its local function, and the results are averaged) zeR?
Worker 1 Worker 2 Worker 3
Receive z; from the server Receive z; from the server Receive x; from the server
T1t = Tt T2t — Tt I3t — Tt
T1 41 = 21 — YV f1(z1,) T 111 = Tat — YV fa(w2y) T3.141 = T3t — YV f3(23)
T1442 = T1 41 — YV 1(21,641) To t+2 = To 141 — YV fa(T2,641) T3 42 = T3t+1 — YV f3(T3,441)
T144+K = T+ k-1 — YV [1(T104 K1) To1+K = Top4K—1 — YV 2(22 14 K-1) T34+ K = T30+ K—1 — YV f3(T3,14 K1)
Server
3
1
T+ K = § Tit+K
1=1

Broadcast ;4 x to the workers
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Brief History of Local Training Methods

Table 1: Five generations of local training (LT) methods summarizing the progress made by the ML/FL community
over the span of 7+ years in the understanding of the communication acceleration properties of LT.

Generation(® Theory Assumptions Comm. Complexity(®  Selected Key References
X — empirical results only LocalSGD [Povey et al., 2015]
1. Heuristic X — empirical results only SparkNet [Moritz et al., 2016]
X — empirical results only FedAvg [McMahan et al., 2017]
9. Homogeneous v bounded gradients sublinear FedAvg [Li et al., 2020Db]
' B v bounded grad. diversity(¢) linear but worse than GD  LFGD [Haddadpour and Mahdavi, 2019]
3. Sublinear v standard(4) sublinear LGD [Khaled et al., 2019]
' v standard sublinear LSGD [Khaled et al., 2020]
v standard linear but worse than GD  Scaffold [Karimireddy et al., 2020]
4. Linear v standard linear but worse than GD  S-Local-GD [Gorbunov et al., 2020a)
v standard linear but worse than GD  FedLin [Mitra et al., 2021]
5 Accelerated v standard linear & better than GD ProxSkip/Scaffnew [Mishchenko et al., 2022
’ v standard linear & better than GD ProxSkip-VR

(2) Since client sampling (CS) and data sampling (DS) can only worsen theoretical communication complexity, our historical breakdown of the literature
into 5 generations of LT methods focuses on the full client participation (i.e., no CS) and exact local gradient (i.e., no DS) setting. While some of the
referenced methods incorporate CS and DS techniques, these are irrelevant for our purposes. Indeed, from the viewpoint of communication complexity, all
these algorithms enjoy best theoretical performance in the no-CS and no-DS regime.

(®) For the purposes of this table, we consider problem (1) in the smooth and strongly convex regime only. This is because the literature on LT methods
struggles to understand even in this simplest (from the point of view of optimization) regime.

(©) Bounded gradient diversity is a uniform bound on a specific notion of gradient variance depending on client sampling probabilities. However, this
assumption (as all homogeneity assumptions) is very restrictive. For example, it is not satisfied the standard class of smooth and strongly convex functions.

(d) The notorious FL challenge of handling non-i.i.d. data by LT methods was solved by Khaled et al. [2019] (from the viewpoint of optimization). From
generation 3 onwards, there was no need to invoke any data/gradient homogeneity assumptions. Handling non-i.i.d. data remains a challenge from the

point of view of generalization, typically by considering personalized FL models.

Grigory Malinovsky, Kai Yi, Peter Richtarik
}Q Variance Reduced ProxSkip: Algorithm, Theory and Application to Federated Learning

PDF NeurlPS 2022
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Why treat all devices equally?

(Each worker performs
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Worker 2

Receive z; from the server

T2t = Tt

To 41 = Tot — YV fa(2a,4)
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Broadcast ;4 x to the workers

Optimization problem:

of 1
min f(x) def - Z fi(x)
i=1
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Worker 3

Receive x; from the server
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T3 i+k = T3 14k—1 — YV f3(T314Kx-1)
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Key insight

GradSkip = + Heterogeneity Awareness

Algorithm Communication Complexity Computational Complexity
Accelerated (100 communications) 1000 GD steps per client
GradSkip Accelerated (100 communications) 10,100, ..., 1000 GD steps
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The ProxSkip Algorithm



Konstantin Mishchenko, Grigory Malinovsky, Sebastian Stich, Peter Richtarik

- Ic M L ProxSkip: Yes! Local Gradient Steps Provably Lead to Communication
nenaionaiconrerence — ACceleration! Finally! International Conference on Machine Learning

(ICML), 2022
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PrOXS kip / Scaffn ew Optimiza(:ic:nlprc:lblem:
Control variates, and random local steps min fl@) = 5;%‘(@“)
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G ra d S ki p Optimization problem:

R T
Let workers decide how much to work min £() = 52 Sl
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Key theoretical technique
Use random control variate

with probability 1 — ¢; do

with probability g; do
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: Assumptions same as in

Assumptions:
IV fi(z) =V iyl <Lillz -yl

(Vfi(z) = Vi), z—y) >ullz -y’
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GradSkip: Bounding the # of Iterations

Theorem:

|

1

1 .
Y P2 —Qqmin(1—p?) } lOg c =

# iterations Lyapunov function:

2 n
Wy =30y mie — 2ll® + T 22 i — hill?
i=1
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GradSkip: Optimal Probabilities

_ L; Lo
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,y — mz'ln { L; p2+Qz(1_p2) Limax

1 1

Y1t ' P2 —@min (1—p?)

min = 0

}log% — Rmax lOg% = I [\Ijt] < eV
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GradSkip: Computational Complexity

a (1 V 'vmax .
Expected # of local steps between 2 communication = GV ) < min {lii, \/limax}

Kit+/Kmax

Worker 1 Worker 2 Worker 3
f1 || k1 =10 fo ‘ —| k2 =100 3 || Kmax = 1,000,000
10 local steps 100 local steps 1000 local steps
PI'OXSkipI N/ Rmax — 3000 n+/Fmax .

n ( ) i "‘vi(l_:‘\/"'«max> /{max—>oo/
< . K4 ]-‘l'\/ Kmax) i—1 &8 vEmax
GradSkip: 231 T e 1110
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VS

Number of iterations

Rmax log =

1

Expected number of

communications

/Fomax log

Expected number of local steps

; min 4 ki, /K K max
between two communications Ki+t+/Kmax — L) max
n
(14++/
Expected number of local steps E i (14+/Fmax) ~ \/Kax N~/ Rmax

K3 _|_\/ Kmax
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Experimental setup

L2-regularized logistic regression:

A\ b; € {—1,+1},)\:O.1,

1 n
f(z) = n ;10g (1 S (—bia;x)) ™ §||x||2 A, = U,L;V; € R?0590 5 (A;) = L

n=20, L,,,, = 10*

101 109 101 102 103 104 10° 10° 107
L; 27/ 30



Large maximum smoothness constant
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Figure 1: In the first column we show the smoothness constants for devices. In the second column we show the convergence
per communication rounds. In the third column we show theoretical and practical difference between number of gradient
computations. In the last column we have the average gradient computations for each device having L; smoothness, we see
that for GradSkip the device with L; = L,,,.. does the same number of gradient computations as devices in ProxSkip. 28 /30



Large number of clients
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Figure 2: The columns have the same meaning as in Figure 1.
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